Home>>Signaling Pathways>> Cancer Biology>>NO-Indomethacin

NO-Indomethacin Sale

(Synonyms: NCX 2121) 目录号 : GC44439

An NSAID-NO donor hybrid with anti-cancer activity

NO-Indomethacin Chemical Structure

Cas No.:301838-28-8

规格 价格 库存 购买数量
1mg
¥274.00
现货
5mg
¥1,234.00
现货
10mg
¥2,193.00
现货
50mg
¥9,593.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

NO-indomethacin is a hybrid molecule of indomethacin and a nitric oxide (NO) donor. This drug design combines the anti-inflammatory properties of a non-steroidal anti-inflammatory drug (NSAID) with the gastrointestinal protective effects of NO. Compounds of this class retain their anti-inflammatory and analgesic activity, but have reduced gastrointestinal and kidney toxicity compared to the NSAID alone. NO-indomethacin also enhances the cancer chemopreventative activity of indomethacin. NO-indomethacin exhibits an IC50 of 82 µM, compared to >1,000 µM for indomethacin alone, for the inhibition of pancreatic cancer cell (PaCa-2) growth after 24 hours in culture.

Chemical Properties

Cas No. 301838-28-8 SDF
别名 NCX 2121
Canonical SMILES O=C(C1=CC=C(Cl)C=C1)N2C3=C(C=C(OC)C=C3)C(CC(SC[C@H](N(C(C)=O)[H])C(OCCCCO[N+]([O-])=O)=O)=O)=C2C
分子式 C28H30ClN3O9S 分子量 620.1
溶解度 DMF: 30 mg/ml,DMF:PBS (pH 7.2)(1:1): .5 mg/ml,DMSO: 20 mg/ml,Ethanol: .5 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.6126 mL 8.0632 mL 16.1264 mL
5 mM 0.3225 mL 1.6126 mL 3.2253 mL
10 mM 0.1613 mL 0.8063 mL 1.6126 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Can NO-Indomethacin counteract the topical gastric toxicity induced by indomethacin interactions with phospholipid bilayers?

Colloids Surf B Biointerfaces 2018 Sep 1;169:375-383.PMID:29803153DOI:10.1016/j.colsurfb.2018.05.019.

Nitric oxide (NO)-releasing nonsteroidal anti-inflammatory drugs (NSAIDs) have been developed to overcome the gastrointestinal and cardiovascular toxicity of NSAIDs, by chemically associating a NO-releasing moiety with commercial NSAIDs. Since increasing evidence supports that NSAIDs toxicity is related to their topical actions in membrane lipids, this work aims to evaluate the impact of adding a NO-releasing moiety to parent NSAIDs regarding their effect on lipid bilayers. Thus, the interactions of NO-Indomethacin and indomethacin (parent drug) with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers were described herein at pH 3.0 and 7.4. Diverse experimental techniques were combined to characterize the partitioning and location of drugs in DMPC bilayers, and to analyze their effect on the lipid phase transition and the bilayer structure and dynamics. The partitioning of NO-Indomethacin into DMPC bilayers was similar to that of charged indomethacin and smaller than that of neutral indomethacin. Both drugs were found to insert the DMPC bilayer and the membrane location of indomethacin was pH-dependent. NO-Indomethacin and indomethacin induced a decrease of the main phase transition temperature of DMPC. The effect of these drugs on the bilayer structure and dynamics was dependent on diverse factors, namely drug ionization state, drug:lipid molar ratio, temperature and lipid phase. It is noteworthy that NO-Indomethacin induced more pronounced alterations in the biophysical properties of DMPC bilayers than indomethacin, considering equivalent membrane concentrations. Such modifications may have in vivo implications, particularly in the gastric mucosa, where NO-NSAIDs-induced changes in the protective properties of phospholipid layers may contribute to the occurrence of adverse effects.

Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: effects on molecular targets

Mol Cancer Ther 2006 Jun;5(6):1530-8.PMID:16818512DOI:10.1158/1535-7163.MCT-06-0061.

Nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NO-NSAID) are promising chemoprevention agents; unlike conventional NSAIDs, they seem free of appreciable adverse effects, while they retain beneficial activities of their parent compounds. Their effect on colon carcinogenesis using carcinoma formation as an end point is unknown. We assessed the chemopreventive properties of NO-Indomethacin (NCX 530) and NO-aspirin (NCX 4016) against azoxymethane-induced colon cancer. Seven-week-old male F344 rats were fed control diet, and 1 week later, rats received two weekly s.c. injections of azoxymethane (15 mg/kg body weight). Two weeks after azoxymethane treatment, rats (48 per group) were fed experimental diets containing NO-Indomethacin (0, 40, or 80 ppm), or NO-aspirin (1,500 or 3,000 ppm), representing 40% and 80% of the maximum tolerated dose. All rats were killed 48 weeks after azoxymethane treatment and assessed for colon tumor efficacy and molecular changes in colonic tumors and normally appearing colonic mucosa of different dietary groups. Our results suggest that NO-Indomethacin at 40 and 80 ppm and NO-aspirin at 3,000 ppm significantly suppressed both tumor incidence (P < 0.01) and multiplicity (P < 0.001). The degree of inhibition was more pronounced with NO-Indomethacin at both dose levels (72% and 76% inhibition) than with NO-aspirin (43% and 67%). NO-Indomethacin at 40 and 80 ppm and NO-aspirin at 3,000 ppm significantly inhibited the colon tumors' (P < 0.01 to P < 0.001) total cyclooxygenase (COX), including COX-2 activity (52-75% inhibition) and formation of prostaglandin E2 (PGE2), PGF2alpha, and 6-keto-PGF1alpha, and TxB2 from arachidonic acid (53-77% inhibition). Nitric oxide synthase 2 (NOS-2) activity and beta-catenin expression were suppressed in animals given NO-NSAID. In colonic crypts and tumors of animals fed these two NO-NSAIDs, there was a significant decrease in proliferating cell nuclear antigen labeling when compared with animals fed the control diet. The results of this study provide strong evidence that NO-NSAIDs possess strong inhibitory effect against colon carcinogenesis; their effect is associated with suppression of COX and NOS-2 activities and beta-catenin levels in colon tumors. These results pave the way for the rational design of human clinical trials.

Nitric oxide-releasing indomethacin enhances susceptibility to Trypanosoma cruzi infection acting in the cell invasion and oxidative stress associated with anemia

Chem Biol Interact 2015 Feb 5;227:104-11.PMID:25559858DOI:10.1016/j.cbi.2014.12.024.

Trypanosoma cruzi is the causative agent of Chagas disease. Approximately 8 million people are thought to be affected with this disease worldwide. T. cruzi infection causes an intense inflammatory response, which is critical for the control of parasite proliferation and disease development. Nitric oxide-donating nonsteroidal anti-inflammatory drugs (NO-NSAIDs) are an emergent class of pharmaceutical derivatives with promising utility as chemopreventive agents. In this study, we investigated the effect of NO-Indomethacin on parasite burden, cell invasion, and oxidative stress in erythrocytes during the acute phase of infection. NO-Indomethacin was dissolved in dimethyl formamide followed by i.p. administration of 50 ppm into mice 30 min after infection with 5×10(3) blood trypomastigote forms (Y strain). The drug was administered every day until the animals died. Control animals received 100 μL of drug vehicle via the same route. Within the NO-indomethacin-treatment group, parasitemia and mortality (100%) were higher and oxidative stress in erythrocytes, anemia, and entry of parasites into macrophages were significantly greater than that seen in controls. Increase in the entry and survival of intracellular T. cruzi was associated with inhibition of nitric oxide production by macrophages treated with NO-Indomethacin (2.5 μM). The results of this study provide strong evidence that NO-NSAIDs potently inhibit nitric oxide production, suggesting that NO-NSAID-based therapies against infections would be difficult to design and would require caution.

Low direct cytotoxicity and cytoprotective effects of nitric oxide releasing indomethacin

Dig Dis Sci 2005 Oct;50(10):1927-37.PMID:16187199DOI:10.1007/s10620-005-2963-4.

Nitric oxide (NO) releasing non-steroidal anti-inflammatory drugs (NSAIDs) have shown a marked reduction of gastrointestinal side effects and we here examined the cytotoxicity of NCX 530 (NO-Indomethacin). Under conditions where indomethacin clearly induced both necrosis and apoptosis, NCX 530 induced neither. NCX 530 protected cells from celecoxib-induced necrosis and apoptosis. NCX 530 partially suppressed celecoxib-dependent membrane permeabilization and an inhibitor for guanylate cyclase suppressed the cytoprotective effect of NCX 530 against celecoxib. In vivo, NCX 530 alone produced fewer gastric lesions in rats than did indomethacin. A combination of the oral administration of celecoxib together with the intraperitoneal administration of indomethacin, but not of NCX 530, clearly resulted in the production of gastric lesions. The low direct cytotoxicity and the cytoprotective effect of NCX 530 observed in vitro may also act in vivo, thus ensuring that NCX 530 is safe for use on the gastric mucosa.

Apoptosis induction by combination of drugs or a conjugated molecule associating non-steroidal anti-inflammatory and nitric oxide donor effects in medullary thyroid cancer models: implication of the tumor suppressor p73

Thyroid Res 2015 Aug 14;8:13.PMID:26273323DOI:10.1186/s13044-015-0025-3.

Background: Medullary thyroid cancer (MTC) is a C-cell neoplasm. Surgery remains its main treatment. Promising therapies based on tyrosine kinase inhibitors demand careful patient selection. We previously observed that two non-steroidal anti-inflammatory drugs (NSAID), indomethacin, celecoxib, and nitric oxide (NO) prevented tumor growth in a model of human MTC cell line (TT) in nude mice. Methods: In the present study, we tested the NO donor: glyceryl trinitrate (GTN), at pharmacological dose, alone and in combination with each of the two NSAIDs on TT cells. We also assessed the anti-proliferative potential of NO-Indomethacin, an indomethacin molecule chemically conjugated with a NO moiety (NCX 530, Nicox SA) on TT cells and indomethacin/GTN association in rMTC 6-23 cells. The anti-tumoral action of the combined sc. injections of GTN with oral delivery of indomethacin was also studied on subcutaneous TT tumors in nude mice. Apoptosis mechanisms were assessed by expression of caspase-3, TAp73α, TAp73α inhibition by siRNA or Annexin V externalisation. Results: The two NSAIDs and GTN reduced mitotic activity in TT cells versus control (cell number and PCNA protein expression). The combined treatments amplified the anti-tumor effect of single agents in the two tested cell lines and promoted cell death. Moreover, indomethacin/GTN association stopped the growth of established TT tumors in nude mice. We observed a significant cleavage of full length PARP, a caspase-3 substrate. The cell death appearance was correlated with a two-fold increase in TAp73α expression, with inhibition of apoptosis after TAp73α siRNA addition, demonstrating its crucial role in apoptosis. Conclusion: Association of NO with NSAID exhibited amplified anti-tumoral effects on in vitro and in vivo MTC models by inducing p73-dependent apoptotic cell death.