Nordihydrocapsaicin
(Synonyms: 降二氢辣椒碱) 目录号 : GC39077A capsaicinoid
Cas No.:28789-35-7
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Nordihydrocapsaicin is a capsaicinoid and a major pungency principle that has been found in C. annuum.1,2
1.Topuz, A., and Ozdemir, F.Assessment of carotenoids, capsaicinoids and ascorbic acid composition of some selected pepper cultivars (Capsicum annuum L.) grown in TurkeyJ. Food Compost. Anal.20(7)596-602(2007) 2.Masada, Y., Hashimoto, K., Inoue, T., et al.Analysis of the pungent principles of Capsicum annuum by combined gas chromatography‐mass spectrometryJ. Food. Sci. Technol.36(6)858-860(1971)
Cas No. | 28789-35-7 | SDF | |
别名 | 降二氢辣椒碱 | ||
Canonical SMILES | CC(C)CCCCCC(NCC1=CC=C(O)C(OC)=C1)=O | ||
分子式 | C17H27NO3 | 分子量 | 293.4 |
溶解度 | DMSO : 50 mg/mL (170.42 mM; Need ultrasonic) | 储存条件 | Store at -20°C,protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.4083 mL | 17.0416 mL | 34.0832 mL |
5 mM | 0.6817 mL | 3.4083 mL | 6.8166 mL |
10 mM | 0.3408 mL | 1.7042 mL | 3.4083 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
A monoclonal antibody for identifying capsaicin congeners in illegal cooking oil and its applications
Talanta 2022 Dec 1;250:123686.PMID:35763952DOI:10.1016/j.talanta.2022.123686.
In this work, we studied the preparation of a high-affinity antibody and its immunochromatographic applications to simultaneously identify capsaicin(LJJ), dihydrocapsaicin(HLJ), Nordihydrocapsaicin, homodihydrocapsaicin, and other congeners in illegal cooking oil. We used dihydrocapsaicin hapten-conjugated carrier protein BSA as the immunogen according to the formaldehyde method, and conjugated capsaicin and OVA as the coated detection antigen according to the formaldehyde method. We subsequently screened and cloned a hybridoma cell line 2B3 with the highest affinity, which could stably secrete monoclonal antibodies against compounds in the capsaicin family. We then established a capsaicin indirect ELISA standard curve, which was fitted using the linear regression equation R = 0.9987, curve y = -2.3x + 0.2, and IC50 = 0.2 ng/mL. The cross-reaction rate for capsaicin was 100%, 116% for dihydrocapsaicin, 88% for homodihydrocapsaicin, and 94% for Nordihydrocapsaicin. In the second application, we established a simple and accurate sample pretreatment method and a quantum dot-labeled test strip to quickly and quantitatively detect capsaicin family compounds in illegal cooking oil in 8 min. The average recovery rates for each spiked concentration were between 75% and 107.8%, and the coefficient of variation values for each spiked concentration were less than 15%. The high-affinity antibody we identified could simultaneously identify capsaicin, dihydrocapsaicin, Nordihydrocapsaicin, homodihydrocapsaicin, and other congeners in illegal cooking oil, and the antibody could be quickly and accurately applied for the qualitative and quantitative detection of capsaicin family residues in illegal cooking oil.
Halogenation of a capsaicin analogue leads to novel vanilloid TRPV1 receptor antagonists
Br J Pharmacol 2003 Aug;139(8):1417-24.PMID:12922928DOI:10.1038/sj.bjp.0705387.
1. The C-5 halogenation of the vanillyl moiety of resiniferatoxin, an ultrapotent agonist of vanilloid TRPV1 receptors, results in a potent antagonist for these receptors. Here, we have synthesized a series of halogenated derivatives of 'synthetic capsaicin' (nonanoyl vanillamide=Nordihydrocapsaicin) differing for the nature (iodine, bromine-chlorine) and the regiochemistry (C-5, C-6) of the halogenation. 2. The activity of these compounds was investigated on recombinant human TRPV1 receptors overexpressed in HEK-293 cells. None of the six compounds exerted any significant agonist activity, as assessed by measuring their effect on TRPV1-mediated calcium mobilization. Instead, all compounds antagonized, to various extents, the effect of capsaicin in this assay. 3. All 6-halo-nordihydrocapsaicins behaved as competitive antagonists against human TRPV1 according to the corresponding Schild's plots, and were more potent than the corresponding 5-halogenated analogues. The iodo-derivatives were more potent than the bromo- and chloro-derivatives. 4. Using human recombinant TRPV1, 6-iodo-nordihydrocapsaicin (IC(50)=10 nM against 100 nM capsaicin) was about four times more potent than the prototypical TRPV1 antagonist, capsazepine, and was tested against capsaicin also on native TRPV1 in: (i) rat dorsal root ganglion neurons in culture; (ii) guinea-pig urinary bladder; and (iii) guinea-pig bronchi. In all cases, except for the guinea-pig bronchi, the compound was significantly more potent than capsazepine as a TRPV1 antagonist. 5. In conclusion, 6-iodo-nordihydrocapsaicin, a stable and easily prepared compound, is a potent TRPV1 antagonist and a convenient replacement for capsazepine in most of the in vitro preparations currently used to assess the activity of putative vanilloid receptor agonists.
Evaluation of ultra high-performance liquid chromatography (uHPLC) assisted capsaicinoids content in four different extracts of ( Capsicum chinense Jacq.): their pharmacological potentials and genotoxicity study
Nat Prod Res 2022 Nov;36(21):5638-5642.PMID:34937448DOI:10.1080/14786419.2021.2019735.
The present study determined the capsaicin, dihydrocapsaicin and Nordihydrocapsaicin of Capsicum chinense Jacq., ethanol, methanol, acetonitrile and dry acetone extracts using ultra high-performance liquid chromatography (uHPLC) technique. Highest capsaicin (2.84%) and Nordihydrocapsaicin (0.56%) content was recorded in ethanol extract, while methanol extracts constituted highest dihydrocapsaicin (1.27%). Strong anti-inflammatory activity was shown by ethanol extract. All the extracts were found to be weak anti-diabetic, skin whitening and neurodegenerative agent. In genotoxicity test, ethanol extract showed mitotic index (MI) of 13.16% which was close to distilled water 25.72%. The chromosomal aberration of 8.0% was shown by ethanolic extract. The mitotic index value and chromosome aberration percentages of all the four extracts were similar but far from positive mutagenic agent ethyl methane sulfonate. Ethanol extract proved to be the best solvent for capsaicinoids extraction in comparison to the other three solvents and emerged as a potential pharmacological candidate having excellent anti-inflammatory ability.
Recent advances in the study on capsaicinoids and capsinoids
Eur J Pharmacol 2011 Jan 10;650(1):1-7.PMID:20946891DOI:10.1016/j.ejphar.2010.09.074.
Chili peppers are the major source of nature capsaicinoids, which consist of capsaicin, dihydrocapsaicin, Nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicin, etc. Capsaicinoids are found to exert multiple pharmacological and physiological effects including the activities of analgesia, anticancer, anti-inflammation, antioxidant and anti-obesity. Therefore, capsaicinoids may have the potential value in clinic for pain relief, cancer prevention and weight loss. In addition, capsaicinoids also display the benefits on cardiovascular and gastrointestinal system. It has been shown that capsaicinoids are potential agonists of capsaicin receptor or transient receptor potential vanilloid subfamily member 1 (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. CH-19 Sweet peppers are the source of nature capsinoids, which share similar structure with capsaicinoids and consist of capsiate, dihydrocapsiate, and nordihydrocapsiate, etc, Comparing with capsaicinoids, capsinoids are less pungent and easily broken down in the normal aqueous conditions. So far, it has been found that capsinoids possess the biological properties of antitumor, antioxidant and anti-obesity. Since capsinoids are less toxic than capsaicinoids, therefore, capsinoids may have the advantages over capsaicinoids in clinical applications such as cancer prevention and weight loss.
Screening Capsicum accessions for capsaicinoids content
J Environ Sci Health B 2006;41(5):717-29.PMID:16785178DOI:10.1080/03601230600701908.
Ninety Capsicum accessions selected from the USDA Capsicum germplasm collection were screened for their capsaicinoids content using gas hromatography with nitrogen phosphorus detection (GC/NPD). Fresh fruits of Capsicum chinense, C. frutescens, C. baccatum, C. annuum, and C. pubescens were extracted with methanol and analyzed for capsaicin, dihydrocapsaicin, and Nordihydrocapsaicin. Mass spectrometry of the fruit crude extracts indicated that the molecular ions at m/z 305, 307, and 293, which correspond to capsaicin, dihydrocapsaicin, and Nordihydrocapsaicin, respectively, have a common benzyl cation fragment at m/z 137 that can be used for monitoring capsaicinoids in pepper fruit extracts. Capsaicin and dihydrocapsaicin were the dominant capsaicinoids detected. Capsaicin concentrations were typically greater than dihydrocapsaicin. Concentrations of total capsaicinoids varied from not detectable to 11.2 mg fruit(-1). Statistical analysis revealed that accession PI-441624 (C. chinense) had the highest capsaicin content (2.9 mg g(-1) fresh fruit) and accession PI-497984 (C. frutescens) had the highest dihydrocapsaicin content (2.3 mg g(-1) fresh fruit). Genebank accessions PI-439522 (C. frutescens) and PI-497984 contained the highest concentrations of total capsaicinoids.