Nortanshinone
(Synonyms: 降丹参酮) 目录号 : GC39020Nortanshinone 是一种从丹参中提取的色素。
Cas No.:97399-70-7
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Nortanshinone is a pigment isolated from Dan-Shen[1].
[1]. Hou-WeiLuo, et al.Pigments from Salvia miltiorrhiza. Phytochemistry.Volume 24, Issue 4, 1985, Pages 815-817.
Cas No. | 97399-70-7 | SDF | |
别名 | 降丹参酮 | ||
Canonical SMILES | O=C1C2=C(C=CC3=C2CCCC3=O)C4=C(C(C)=CO4)C1=O | ||
分子式 | C17H12O4 | 分子量 | 280.27 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.568 mL | 17.8399 mL | 35.6799 mL |
5 mM | 0.7136 mL | 3.568 mL | 7.136 mL |
10 mM | 0.3568 mL | 1.784 mL | 3.568 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
[Analysis of lipophilic components of Salvia miltiorrhiza roots and S. yunnanensis roots by UPLC and LC-MS/MS]
Zhongguo Zhong Yao Za Zhi 2019 Mar;44(6):1208-1215.PMID:30989985DOI:10.19540/j.cnki.cjcmm.20181226.020.
Fingerprints of lipophilic components in the roots of Salvia miltiorrhiza and S.yunnanensis were analyzed by UPLC-DADand UPLC coupled with mass spectroscopy to evaluate the differences and similarities of the lipophilic components in the two kinds of herbs.The UPLC analysis of 18 batches of S.miltiorrhiza and 16 batches of S.yunnanensis was performed on a 25℃Thermo Accucore C_(18)column(2.1 mm×100 mm,2.6μm)by Shimadzu LC-20AD;mobile phase was 0.026%phosphoric acid(A)-acetonitrile(B)with gradient elution;flow rate was 0.4 m L·min~(-1);detection wavelength was set at 270 nm;injection volume was 2μL.The molecular structures of the lipophilic components were analyzed on a 25℃Thermo Accucore C_(18)column(2.1 mm×100 mm,2.6μm)by Thermo U3000 UPLC Q Exactive Orbitrap LC-MS/MS with a mobile phaseconsisting of 0.1%formic acid water(A)and 0.1%formic acidacetonitrile(B).The mass spectrometry was acquired in positive modes using ESI.There are 10 common peaks in the lipophilic components of S.miltiorrhiza.The similarity between the 16 batches of S.miltiorrhiza and their own reference spectra was greater than 0.942,and the average similarity was 0.973.There are 12 common peaks in the lipophilic components of S.yunnanensis.The similarity between the 18 batches of S.yunnanensis and their own reference spectra was greater than 0.937,and the average similarity was 0.976.The similarity between the reference chromatograms of S.miltiorrhiza and S.yunnanensis was only 0.900.There are three lipophilic components in S.yunnanensis,which are not found in S.miltiorrhiza,and one of which isα-lapachone.There is a lipophilic component in S.miltiorrhiza not found in S.yunnanensis,which may be miltirone.The two herbs contain 8 common lipophilic components including dihydrotanshinoneⅠ,cryptotanshinone,tanshinoneⅠ,tanshinoneⅡ_A,Nortanshinone in which the content of tanshinoneⅡ_A,dihydrotanshinoneⅠand cryptotanshinone of S.yunnanensisis significantly lower than that of S.miltiorrhiza(P<0.01),and the contents of tanshinoneⅠand Nortanshinone are significantly lower than that of S.miltiorrhiza too(P<0.05).There are significant differences in the types and contents of lipophilic components between the roots of S.miltiorrhiza and S.yunnanensis,and the similarity between the fingerprints of interspecies is much lower than that between the same species.Therefore,the roots of S.miltiorrhiza and S.yunnanensis are two kinds of herbs which are quite different in chemical compounds and compositions.
[Chemical studies of Salvia miltiorrhiza f. alba]
Yao Xue Xue Bao 1991;26(3):209-13.PMID:1957662doi
Fourteen constituents were isolated from the roots of Salvia miltiorrhiza f. alba. Two of them were new compounds and were named 1,2,15,16-tetrahydrotanshiquinone (I) and tanshinaldehyde (II). The others were identified as Ro-090680 (III), dihydroisotanshone I (IV), danshexinkun B (V), miltirone (VI), Nortanshinone (VII), hydroxytanshinone II-A (VIII), tanshinone I (IX), dihydrotanshinone I (X), tanshinone II-A (XI), cryptotanshinone (XII), methylenetanshiquinone (XIII), methyltanshinonate (XIV), I and III showed inhibitory activity against P388 Leukemia cell in vitro. III was reported to be a potent inhibitor of rabbit platelet aggregation induced by collagen.