Home>>Signaling Pathways>> Apoptosis>>Odoroside A

Odoroside A Sale

(Synonyms: 夹竹桃苷) 目录号 : GC63341

Odoroside A 是从夹竹桃叶中提取的一种有效成分。Odoroside A 具有抗癌活性。Odoroside A 通过 ROS/p53 信号通路诱导细胞凋亡和细胞周期阻滞,导致肿瘤细胞死亡。

Odoroside A Chemical Structure

Cas No.:12738-19-1

规格 价格 库存 购买数量
1 mg
¥2,160.00
现货
5 mg
¥5,850.00
现货
10 mg
¥8,550.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Odoroside A is an active ingredient extracted from the leaves of Nerium oleander Linn. Odoroside A has anti-cancer activity. Odoroside A could induce apoptosis and cell cycle arrest through ROS/p53 signaling pathway, leading to the tumor cell death[1].

[1]. Chen YY, et al. Proteomic Analysis Reveals that Odoroside A Triggers G2/M Arrest and Apoptosis in Colorectal Carcinoma Through ROS-p53 Pathway. Proteomics. 2019;19(15):e1900092.

Chemical Properties

Cas No. 12738-19-1 SDF
别名 夹竹桃苷
分子式 C30H46O7 分子量 518.68
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.928 mL 9.6399 mL 19.2797 mL
5 mM 0.3856 mL 1.928 mL 3.8559 mL
10 mM 0.1928 mL 0.964 mL 1.928 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Antitumour effect of Odoroside A and its derivative on human leukaemia cells through the ROS/JNK pathway

Basic Clin Pharmacol Toxicol 2022 Jan;130(1):56-69.PMID:34634178DOI:10.1111/bcpt.13673.

Oleandrigenin-3-O-β-D-diginoside (a derivative of Odoroside A), isolated and purified by our group, has seldom been explored for its pharmacological activity. This study aimed at clarifying the mechanisms towards the leukaemia-suppressive role of Odoroside A (compound #1) and its derivative, oleandrigenin-3-O-β-D-diginoside (compound #2) isolated from Nerium oleander. Viability and nuclear morphology change were assessed by CCK-8 assay and fluorescence microscope, respectively. Then, the cell apoptosis and autophagy induced by the compounds were detected by flow cytometry and Western blot. Xenograft model of nude mice was also applied to measure the leukaemia-suppressive effects of compound #2 in vivo. The result displayed that compound #1 and compound #2 inhibited the proliferation of HL60 and K562 cells and stronger effects were found in HL60 than K562 cells. Both of the compounds induced a dose-dependent apoptosis and autophagy in HL60 cells, where compound #2 was more potent than compound #1. Compound #2 also demonstrated a time-dependent apoptosis and autophagy in HL60 cells. Furthermore, ROS generation and JNK phosphorylation occurred in a dose-dependent manner in the cells treated with compound #2. Mitochondria also played critical role, proved by the decrease of Bcl-2, the release of cyto c to cytosol and the activation of caspase-3 and caspase-9. Moreover, the antitumour effects of compound #2 were validated in the nude mouse xenograft model in vivo. Odoroside A and its derivative inhibited the growth of leukaemia by inducing apoptosis and autophagy through the activation of ROS/JNK pathway. These results suggest that the compounds can serve as potential antitumour agents against leukaemia, especially acute myeloid leukaemia (AML).

Oleandrin and Its Derivative Odoroside A, Both Cardiac Glycosides, Exhibit Anticancer Effects by Inhibiting Invasion via Suppressing the STAT-3 Signaling Pathway

Int J Mol Sci 2018 Oct 26;19(11):3350.PMID:30373171DOI:10.3390/ijms19113350.

The cardiac glycosides oleandrin and Odoroside A, polyphenolic monomer compounds extracted from Nerium oleander, have been found to have antitumor effects on various tumors at low doses. However, the mechanisms of anticancer effects of oleandrin and Odoroside A are not well known. Therefore, in this study, we aimed to investigate the anticancer effects of oleandrin and Odoroside A and their associated mechanisms in highly metastatic MDA-MB-231 breast cancer cells and radiotherapy-resistant (RT-R) MDA-MB-231 cells. Our results showed that oleandrin and Odoroside A dose-dependently decreased the colony formation and the invasion of both cell lines at nanomolar ranges. Furthermore, oleandrin (50 nM) and Odoroside A (100 nM) reduced octamer-binding transcription factor 3/4 (OCT3/4) and β-catenin levels and matrix metalloproteinase-9 (MMP-9) activity. Finally, we found that phospho-STAT-3 levels were increased in MDA-MB-231 and RT-R-MDA-MB-231, but not in endothelial cells (ECs), and that the levels were significantly decreased by oleandrin (50 nM) and Odoroside A (100 nM). Inhibition of phospho-signal transducer and activator of transcription (STAT)-3 significantly reduced OCT3/4 and β-catenin levels and MMP-9 activity, ultimately resulting in reduced invasion. These results suggest that the anticancer effects of oleandrin and Odoroside A might be due to the inhibition of invasion through of phospho-STAT-3-mediated pathways that are involved in the regulation of invasion-related molecules.

Interaction of Odoroside A, A Known Natural Cardiac Glycoside, with Na+/K+-ATPase

J Membr Biol 2023 Feb 25.PMID:36840763DOI:10.1007/s00232-023-00281-1.

The nature of Odoroside A, a cardiac glycoside (CG) extracted from Nerium oleander, as well as its chemical structure is quite similar to a well-known CG, ouabain possessing a steroid skeleton, a five-membered unsaturated lactone ring, and a sugar moiety as a common structure. Like ouabain, Odoroside A inhibits the activity of Na+/K+-ATPase (NKA) and shows significant anticancer activity, however its inhibitory mechanism remains unknown. CGs show various physiological activities, including cardiotonic and anticancer activities, through the inhibition of NKA by direct interaction. Additionally, X-ray crystallographic analysis revealed the inhibitory mechanism of ouabain and digoxin in relation to NKA. By using different molecular modeling techniques, docking simulation of Odoroside A and NKA was conducted based on the results of these X-ray crystallographic analyses. Furthermore, a comparison of the results with the binding characteristics of three known CGs (ouabain, digoxin, and digitoxin) was also conducted. Odoroside A fitted into the CG binding pocket on the α-subunit of NKA revealed by X-ray crystallography. It had key interactions with Thr797 and Phe783. Also, three known CGs showed similar interactions with Thr797 and Phe783. Interaction modes of Odoroside A were quite similar to those of ouabain, digoxin, and digitoxin. Docking simulations indicated that the sugar moiety enhanced the interaction between NKA and CGs, but did not show enhanced NKA inhibitory activity because the sugar moiety was placed outside the entrance of active site. Thus, these results suggest that the inhibitory mechanism of Odoroside A to NKA is the same as the known CGs.

Odoroside A and ouabain inhibit Na+/K+-ATPase and prevent NF-kappaB-inducible protein expression by blocking Na+-dependent amino acid transport

Biochem Pharmacol 2009 Nov 1;78(9):1157-66.PMID:19559678DOI:10.1016/j.bcp.2009.06.027.

Inflammatory cytokines, such as tumor necrosis factor (TNF)-alpha and interleukin-1 (IL-1), trigger the activation of transcription factor NF-kappaB that induces the expression of a variety of genes, including intercellular adhesion molecule (ICAM)-1. Odoroside A [3beta-O-(beta-D-diginosyl)-14-hydroxy-5beta,14beta-card-20(22)-enolide] was found to inhibit the cell-surface expression of ICAM-1 induced by TNF-alpha and IL-1 at comparable concentrations in human lung carcinoma A549 cells. In this study, the molecular mechanism underlying the inhibition of TNF-alpha-induced cell-surface ICAM-1 expression by Odoroside A together with the specific Na(+)/K(+)-ATPase inhibitor ouabain was further investigated. Odoroside A and ouabain neither prevented IkappaBalpha degradation nor NF-kappaB translocation to the nucleus upon TNF-alpha stimulation. While Odoroside A and ouabain had no inhibitory effect on the induction of ICAM-1 mRNA, they inhibited the TNF-alpha-induced ICAM-1 expression at the protein level. Consistent with these results, Odoroside A and ouabain potently reduced de novo protein synthesis, largely due to its ability to block Na(+)-dependent transport of amino acids across the plasma membrane, but not to interfering with the translation machinery. As a direct molecular target, Odoroside A was found to inhibit the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase as potently as ouabain. These results clearly demonstrate that Odoroside A and ouabain prevent NF-kappaB-inducible protein expression by blocking the Na(+)-dependent amino acid transport.

Proteomic Analysis Reveals that Odoroside A Triggers G2/M Arrest and Apoptosis in Colorectal Carcinoma Through ROS-p53 Pathway

Proteomics 2019 Aug;19(15):e1900092.PMID:31294914DOI:10.1002/pmic.201900092.

Odoroside A (OA) is an active ingredient extracted from the leaves of Nerium oleander Linn. (Apocynaceae). This study aims to examine the anticancer bioactivity of OA against CRC cells and to investigate the action mechanisms involved. As a result, OA can significantly inhibit cellular ability and induce apoptosis of CRC cells in a concentration-dependent manner without any obvious cytotoxicity in normal colorectal epithelial cells. Then, quantitative proteomics combined with bioinformatics is adopted to investigate the alterations of proteins and signaling pathways in response to OA treatment. As suggested by the proteomic analysis, flow cytometry and Western blotting analyses validate that exposure of CRC cells to OA causes cell cycle arrest and apoptosis, accompanied with the activation of the ROS/p53 signaling pathway. This observation demonstrates that OA, as a natural product, can induce oxidative stress to suppress tumor cell growth, implicating a novel therapeutic agent against CRC without obvious side effects.