ONO-AE3-208 (sodium salt)
目录号 : GC44510An EP4 receptor antagonist
Cas No.:2309931-05-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
ONO-AE3-208 is an antagonist of the EP4 receptor (Ki = 1.3 nM) that less potently affects EP3, FP, and TP receptors (Kis = 30, 790, and 2,400 nM, respectively) and is without effect on other prostanoid receptors. In wild type mice, it mimics deletion of EP4 by producing severe colitis, with epithelial loss, crypt damage, and inflammation, after treatment with 3% dextran sodium sulfate. ONO-AE3-208 has also been used to implicate EP4 signaling in immune and autoimmune responses, inflammation, and cancer.
Cas No. | 2309931-05-1 | SDF | |
Canonical SMILES | FC1=CC=C(C(C(NC2=CC(C#N)=CC=C2CCCC([O-])=O)=O)C)C3=CC=CC=C31.[Na+] | ||
分子式 | C24H21FN2O3•Na | 分子量 | 426.4 |
溶解度 | DMF: 30 mg/ml,DMSO: 20 mg/ml,Ethanol: 20 mg/ml,PBS (pH 7.2): 3 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.3452 mL | 11.7261 mL | 23.4522 mL |
5 mM | 0.469 mL | 2.3452 mL | 4.6904 mL |
10 mM | 0.2345 mL | 1.1726 mL | 2.3452 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
The PGE(2)-EP4 receptor is necessary for stimulation of the renin-angiotensin-aldosterone system in response to low dietary salt intake in vivo
Am J Physiol Renal Physiol 2012 Nov 15;303(10):F1435-42.PMID:22993066DOI:10.1152/ajprenal.00512.2011.
Increased cyclooxygenase-2 (COX-2) expression and PGE(2) synthesis have been shown to be prerequisites for renal renin release after Na(+) deprivation. To answer the question of whether EP4 receptor type of PGE(2) mediates renin regulation under a low-salt diet, we examined renin regulation in EP4(+/+), EP4(-/-), and in wild-type mice treated with EP4 receptor antagonist. After 2 wk of a low-salt diet (0.02% wt/wt NaCl), EP4(+/+) mice showed diminished Na(+) excretion, unchanged K(+) excretion, and reduced Ca(2+) excretion. Diuresis and plasma electrolytes remained unchanged. EP4(-/-) exhibited a similar attenuation of Na(+) excretion; however, diuresis and K(+) excretion were enhanced, and plasma Na(+) concentration was higher, whereas plasma K(+) concentration was lower compared with control diet. There were no significant differences between EP4(+/+) and EP4(-/-) mice in blood pressure, creatinine clearance, and plasma antidiuretic hormone (ADH) concentration. Following salt restriction, plasma renin and aldosterone concentrations and kidney renin mRNA level rose significantly in EP4(+/+) but not in EP4(-/-) and in wild-type mice treated with EP4 antagonist ONO-AE3-208. In the latter two groups, the low-salt diet caused a significantly greater rise in PGE(2) excretion. Furthermore, mRNA expression for COX-2 and PGE(2) synthetic activity was significantly greater in EP4(-/-) than in EP4(+/+) mice. We conclude that low dietary salt intake induces expression of COX-2 followed by enhanced renal PGE(2) synthesis, which stimulates the renin-angiotensin-aldosterone system by activation of EP4 receptor. Most likely, defects at the step of EP4 receptor block negative feedback mechanisms on the renal COX system, leading to persistently high PGE(2) levels, diuresis, and K(+) loss.
Dominant role of prostaglandin E2 EP4 receptor in furosemide-induced salt-losing tubulopathy: a model for hyperprostaglandin E syndrome/antenatal Bartter syndrome
J Am Soc Nephrol 2005 Aug;16(8):2354-62.PMID:15976003DOI:10.1681/ASN.2004070556.
Increased formation of prostaglandin E2 (PGE2) is a key part of hyperprostaglandin E syndrome/antenatal Bartter syndrome (HPS/aBS), a renal disease characterized by NaCl wasting, water loss, and hyperreninism. Inhibition of PGE2 formation by cyclo-oxygenase inhibitors significantly lowers patient mortality and morbidity. However, the pathogenic role of PGE2 in HPS/aBS awaits clarification. Chronic blockade of the Na-K-2Cl co-transporter NKCC2 by diuretics causes symptoms similar to HPS/aBS and provides a useful animal model. In wild-type (WT) mice and in mice lacking distinct PGE2 receptors (EP1-/-, EP2-/-, EP3-/-, and EP4-/-), the effect of chronic furosemide administration (7 d) on urine output, sodium and potassium excretion, and renin secretion was determined. Furthermore, furosemide-induced diuresis and renin activity were analyzed in mice with defective PGI2 receptors (IP-/-). In all animals studied, furosemide stimulated a rise in diuresis and electrolyte excretion. However, this effect was blunted in EP1-/-, EP3-/-, and EP4-/- mice. Compared with WT mice, no difference was observed in EP2-/- and IP-/- mice. The furosemide-induced increase in plasma renin concentration was significantly decreased in EP4-/- mice and to a lesser degree also in IP-/- mice. Pharmacologic inhibition of EP4 receptors in furosemide-treated WT mice with the specific antagonist ONO-AE3-208 mimicked the changes in renin mRNA expression, plasma renin concentration, diuresis, and sodium excretion seen in EP4-/- mice. The GFR in EP4-/- mice was not changed compared with that in WT mice, which indicated that blunted diuresis and salt loss seen in EP4-/- mice were not a consequence of lower GFR. In summary, these findings demonstrate that the EP4 receptor mediates PGE2-induced renin secretion and that EP1, EP3, and EP4 receptors all contribute to enhanced PGE2-mediated salt and water excretion in the HPS/aBS model.