Home>>Signaling Pathways>> Ubiquitination/ Proteasome>> Autophagy>>Oroxylin A

Oroxylin A Sale

(Synonyms: 千层纸素A; Baicalein 6-methyl ether; 6-Methoxybaicalein) 目录号 : GC41625

A flavonoid with diverse biological activities

Oroxylin A Chemical Structure

Cas No.:480-11-5

规格 价格 库存 购买数量
1mg
¥679.00
现货
5mg
¥1,485.00
现货
10mg
¥2,178.00
现货
25mg
¥8,485.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

101

客户使用产品发表文献 1

产品文档

Quality Control & SDS

View current batch:

产品描述

Oroxylin A is a natural active flavonoid with strong anticancer effects.IC50 value:Target:In vitro: Oroxylin A suppressed the MDM2-mediated degradation of p53 via downregulating MDM2 transcription in wt-p53 cancer cells [1]. Oroxylin A remarkably reduced the generation of lactate and glucose uptake under hypoxia in HepG2 cells, inhibited HIF-1α expression and its stability [2]. Oroxylin A promotes superoxide dismutase (SOD2) gene expression through SIRT3-regulated DNA-binding activity of FOXO3a and increases the activity of SOD2 by promoting SIRT3-mediated deacetylation [3]. In vivo: Oroxylin A inhibited the tumor growth of nude mice-inoculated MCF-7 or HCT116 cells. The expression of MDM2 protein in tumor tissue was downregulated by oroxylin A as well [1].

References:
[1]. Zhao K, et al. Oroxylin A promotes PTEN-mediated negative regulation of MDM2 transcription via SIRT3-mediated deacetylation to stabilize p53 and inhibit glycolysis in wt-p53 cancer cells. J Hematol Oncol. 2015 Apr 23;8:41. http://www.ncbi.nlm.nih.gov/pubmed/25902914
[2]. Dai Q, et al. Oroxylin A regulates glucose metabolism in response to hypoxic stress with the involvement of Hypoxia-inducible factor-1 in human hepatoma HepG2 cells. Mol Carcinog. 2015 Aug 10.
[3]. Wei L, et al. Oroxylin A inhibits glycolysis-dependent proliferation of human breast cancer via promoting SIRT3-mediated SOD2 transcription and HIF1α destabilization. Cell Death Dis. 2015 Apr 9

Chemical Properties

Cas No. 480-11-5 SDF
别名 千层纸素A; Baicalein 6-methyl ether; 6-Methoxybaicalein
Canonical SMILES O=C1C2=C(O)C(OC)=C(O)C=C2OC(C3=CC=CC=C3)=C1
分子式 C16H12O5 分子量 284.3
溶解度 DMF: 30 mg/ml,DMSO: 30 mg/ml,DMSO:PBS (pH 7.2) (1:4): 0.20 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.5174 mL 17.5871 mL 35.1741 mL
5 mM 0.7035 mL 3.5174 mL 7.0348 mL
10 mM 0.3517 mL 1.7587 mL 3.5174 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Oroxylin A: A Promising Flavonoid for Prevention and Treatment of Chronic Diseases

Biomolecules 2022 Aug 26;12(9):1185.PMID:36139025DOI:10.3390/biom12091185.

There have been magnificent advancements in the understanding of molecular mechanisms of chronic diseases over the past several years, but these diseases continue to be a considerable cause of death worldwide. Most of the approved medications available for the prevention and treatment of these diseases target only a single gene/protein/pathway and are known to cause severe side effects and are less effective than they are anticipated. Consequently, the development of finer therapeutics that outshine the existing ones is far-reaching. Natural compounds have enormous applications in curbing several disastrous and fatal diseases. Oroxylin A (OA) is a flavonoid obtained from the plants Oroxylum indicum, Scutellaria baicalensis, and S. lateriflora, which have distinctive pharmacological properties. OA modulates the important signaling pathways, including NF-κB, MAPK, ERK1/2, Wnt/β-catenin, PTEN/PI3K/Akt, and signaling molecules, such as TNF-α, TGF-β, MMPs, VEGF, interleukins, Bcl-2, caspases, HIF-1α, EMT proteins, Nrf-2, etc., which play a pivotal role in the molecular mechanism of chronic diseases. Overwhelming pieces of evidence expound on the anti-inflammatory, anti-bacterial, anti-viral, and anti-cancer potentials of this flavonoid, which makes it an engrossing compound for research. Numerous preclinical and clinical studies also displayed the promising potential of OA against cancer, cardiovascular diseases, inflammation, neurological disorders, rheumatoid arthritis, osteoarthritis, etc. Therefore, the current review focuses on delineating the role of OA in combating different chronic diseases and highlighting the intrinsic molecular mechanisms of its action.

Oroxylin A ameliorates AKI-to-CKD transition through maintaining PPARα-BNIP3 signaling-mediated mitochondrial homeostasis

Front Pharmacol 2022 Aug 23;13:935937.PMID:36081929DOI:10.3389/fphar.2022.935937.

Background: Acute kidney injury (AKI) occurs in approximately 7-18% of all hospitalizations, but there are currently no effective drug therapy for preventing AKI or delaying its progression to chronic kidney disease (CKD). Recent studies have shown that Scutellaria baicalensis, a traditional Chinese herb, could attenuate cisplatin-induced AKI, although the mechanism remains elusive. Further, it is unknown whether its major active component, Oroxylin A (OA), can alleviate kidney injury. Methods: The therapeutic effect of OA was evaluated by using ischemia-reperfusion (IR) and cisplatin mediated-AKI mice and HK-2 cells under hypoxia-reoxygenation (HR) conditions. HE staining, transmission electron microscopy, flow cytometry, immunofluorescence, qPCR, Western blot, PPARα inhibitor, BNIP3 siRNA and ChIP assay were used to explore the role and mechanism of OA in AKI. Results: OA ameliorated tubular damage and dramatically decreased serum creatinine (Scr) and urea nitrogen (BUN), and the expressions of renal injury markers (Kim-1, Ngal) in AKI mice induced by both IR injury and cisplatin, as well as attenuating AKI-to-CKD transition. In vitro experiments showed that OA alleviated HR-induced mitochondrial homeostasis imbalance in renal tubular epithelial cells. Mechanistically, OA dose-dependently induced the expression of Bcl-2/adenovirus E1B 19-kDa interacting protein (BNIP3), while knockdown of BNIP3 expression reversed the protection of OA against HR-mediated mitochondrial injury. Network pharmacological analysis and experimental validation suggested that OA enhanced BNIP3 expression via upregulating the expression of peroxisome proliferator activated receptor alpha (PPARα), which induced the transcription of BNIP3 via directly binding to its promoter region. Both in vitro and in vivo experiments confirmed that the renoprotective effect of OA was dramatically reduced by GW6471, a PPARα antagonist. Conclusion: Our findings revealed that OA ameliorates AKI-to-CKD transition by maintaining mitochondrial homeostasis through inducing PPARα-BNIP3 signaling pathway, indicating that OA may serve as a candidate therapeutic strategy for alleviating AKI and CKD.

Oroxylin A reduces osteoclast formation and bone resorption via suppressing RANKL-induced ROS and NFATc1 activation

Biochem Pharmacol 2021 Nov;193:114761.PMID:34492273DOI:10.1016/j.bcp.2021.114761.

Excessive bone erosion by osteoclasts is associated with osteoporosis, rheumatoid arthritis, and periprosthetic osteolysis. Targeting osteoclasts may serve as an effective treatment for osteolytic diseases. Although drugs are currently available for the treatment of these diseases, exploring potential anti-osteoclast natural compounds with safe and effective treatment remains needed. Oroxylin A (OA), a natural flavonoid isolated from the root of Scutellaria baicalensis Georgi, has numerous beneficial pharmacological characteristics, including anti-inflammatory and antioxidant activity. However, its effects and mechanisms on osteoclast formation and bone resorption have not yet been clarified. Our research showed that OA attenuated the formation and function of osteoclast induced by RANKL in a time- and concentration-dependent manner without any cytotoxicity. Mechanistically, OA suppressed intracellular reactive oxygen species (ROS) levels through the Nrf2-mediated antioxidant response. Moreover, OA inhibited the activity of NFATc1, the master transcriptional regulator of RANKL-induced osteoclastogenesis. OA exhibited protective effects in mouse models of post-ovariectomy (OVX)- and lipopolysaccharide (LPS)-induced bone loss, in accordance with its in vitro anti-osteoclastogenic effect. Collectively, our findings highlight the potential of OA as a pharmacological agent for the prevention of osteoclast-mediated osteolytic diseases.

Overview of Oroxylin A: A Promising Flavonoid Compound

Phytother Res 2016 Nov;30(11):1765-1774.PMID:27539056DOI:10.1002/ptr.5694.

Oroxylin A is one of the main active components extracted from Scutellariae radix. It has been proved that Oroxylin A possesses a broad spectrum of pharmacological functions, including anti-cancer, antiinflammation, neuroprotective, anti-coagulation and so on. The pharmacological activity of Oroxylin A has been studied in vitro and on animal models, which reflected its promising potency in disease treatment. This review aims to recapitulate the pharmacological function and the molecular mechanisms of Oroxylin A, as well as its sources, extraction, synthesis and toxicity study. These data confirmed the therapeutic potential of Oroxylin A and provided reference for further development. Copyright © 2016 John Wiley & Sons, Ltd.

Oroxylin A shows limited antiviral activity towards dengue virus

BMC Res Notes 2022 May 4;15(1):154.PMID:35509105DOI:10.1186/s13104-022-06040-0.

Objective: The mosquito transmitted dengue virus (DENV) the causative agent of dengue fever (DF) remains a significant public health burden in many countries. Thailand, along with many countries in Asia and elsewhere, has a long history of using traditional medicines to combat febrile diseases such as DF. Screening bioactive compounds from traditional medicines reported to have antipyretic or anti-inflammatory activity may lead to the development of potent antivirals. In this study Oroxylin A (OA), a flavonoid derivative found in Oroxylum indicum (commonly called the Indian trumpet flower or tree of Damocles), was screened for antiviral activity towards DENV. Results: Cytotoxicity analysis in BHK-21 cells showed a 50% cytotoxic concentration (CC50) of 534.17 µM. The compound showed no direct virucidal activity towards DENV, and pre-treatment of cells had no effect on virus production. A deficit was seen in virus production when cells were post-infection treated with Oroxylin A. Under conditions of post-infection treatment, the EC50 value was 201.1 µM, giving a selectivity index (SI) value of 2.66. Accumulation of DENV E protein inside the cell was seen under conditions of post-infection treatment, suggesting that Oroxylin A may exert some effects at the virus assembly/egress stages of the replication cycle.