Home>>Signaling Pathways>> Others>> Others>>Padsevonil (UCB-0942)

Padsevonil (UCB-0942) Sale

(Synonyms: UCB-0942) 目录号 : GC30825

Padsevonil (UCB-0942) (UCB0942) 是一流的强效抗癫痫药。

Padsevonil (UCB-0942) Chemical Structure

Cas No.:1294000-61-5

规格 价格 库存 购买数量
5mg
¥4,635.00
现货
10mg
¥6,795.00
现货
25mg
¥13,140.00
现货
50mg
¥20,340.00
现货
100mg
¥28,350.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Padsevonil is a potent antiepileptic agent.

Padsevonil (UCB0942) is a potent antiepileptic agent[1].

[1]. Zaccara G, et al. Antiepileptic Drugs in Clinical Development: Differentiate or Die? Curr Pharm Des. 2017;23(37):5593-5605.

Chemical Properties

Cas No. 1294000-61-5 SDF
别名 UCB-0942
Canonical SMILES O=C1N(C[C@@H](CC(F)(F)Cl)C1)CC(N(N=C(COC)S2)C2=N3)=C3C(F)(F)F
分子式 C14H14ClF5N4O2S 分子量 432.8
溶解度 DMSO : 100 mg/mL (231.05 mM);Water : < 0.1 mg/mL (insoluble) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.3105 mL 11.5527 mL 23.1054 mL
5 mM 0.4621 mL 2.3105 mL 4.6211 mL
10 mM 0.2311 mL 1.1553 mL 2.3105 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Current and future pharmacotherapy options for drug-resistant epilepsy

Introduction: Epilepsy is a common neurological condition, affecting over 70 million individuals worldwide. Areas covered: The present paper reviews current and future (under preclinical and clinical development) pharmacotherapy options for the treatment of drug-resistant focal and generalized epilepsies. Expert opinion: Current pharmacotherapy options for drug-resistant epilepsy include perampanel, brivaracetam and the newly approved cenobamate for focal epilepsies; cannabidiol (Epidiolex) for Lennox-Gastaut Syndrome (LGS), Dravet and Tuberous Sclerosis Complex (TSC); fenfluramine for Dravet syndrome and ganaxolone for seizures in Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder. Many compounds are under clinical development and may hold promise for future pharmacotherapies. For adult focal epilepsies, padsevonil and carisbamate are at a more advanced Phase III stage of clinical development followed by compounds at Phase II like selurampanel, XEN1101 and JNJ-40411813. For specific epilepsy syndromes, XEN 496 is under Phase III development for potassium voltage-gated channel subfamily Q member 2 developmental and epileptic encephalopathy (KCNQ2-DEE), carisbamate is under Phase III development for LGS and Ganaxolone under Phase III development for TSC. Finally, in preclinical models several molecular targets including inhibition of glycolysis, neuroinflammation and sodium channel inhibition have been identified in animal models although further data in animal and later human studies are needed.

Emerging drugs for focal epilepsy

Epilepsy is one of the most serious neurological conditions, affecting almost 50 million people around the world. Despite more than 20 antiepileptic drugs (AEDs) available, seizures are still uncontrolled in one third of patients. Areas covered: The present paper reviews current compounds in preclinical and clinical development for the treatment of focal epilepsies and new potential molecular targets recently identified. Expert opinion: 1OP-2198, Cannabidavirin, Everolimus, FV-082, Ganaxolone, Minocycline, NAX 810-2, Padsevonil and Selurampanel seem to be particularly promising in focal epilepsy. Some of them, Everolimus and Ganaxolone, are already completing Phase III development while others are still at a preclinical stage. Everolimus represents the first example of precision-medicine in epilepsy and the first generation of disease-modifying agents but data on long-term safety are needed. Among AEDs in Phase II development, Cannabidavirin, Padsevonil and Selurampanel may represent a promising fourth generation of compounds for focal epilepsies if they successfully proceed to subsequent stages. Data on general tolerability, effects of cognition and behavior as well as the potential for interactions in polytherapy will be key element for the success or decline of these drugs.

Functional characterization of the antiepileptic drug candidate, padsevonil, on GABAA receptors

Objective: The antiepileptic drug candidate, padsevonil, is the first in a novel class of drugs designed to interact with both presynaptic and postsynaptic therapeutic targets: synaptic vesicle 2 proteins and γ-aminobutyric acid type A receptors (GABAA Rs), respectively. Functional aspects of padsevonil at the postsynaptic target, GABAA Rs, were characterized in experiments reported here.
Methods: The effect of padsevonil on GABA-mediated Cl- currents was determined by patch clamp on recombinant human GABAA Rs (α1β2γ2) stably expressed in a CHO-K1 cell line and on native GABAA Rs in cultured rat primary cortical neurons. Padsevonil selectivity for GABAA R subtypes was evaluated using a two-electrode voltage clamp on recombinant human GABAA Rs (α1-5/β2/γ2) in Xenopus oocytes.
Results: In recombinant GABAA Rs, padsevonil did not evoke Cl- currents in the absence of the agonist GABA. However, when co-administered with GABA at effective concentration (EC)20 , padsevonil potentiated GABA responses by 167% (EC50 138 nmol/L) and demonstrated a relative efficacy of 41% compared with zolpidem, a reference benzodiazepine site agonist. Similarly, padsevonil demonstrated GABA-potentiating activity at native GABAA Rs (EC50 208 nmol/L) in cultured rat cortical neurons. Padsevonil also potentiated GABA (EC20 ) responses in GABAA Rs expressed in oocytes, with higher potency at α1- and α5-containing receptors (EC50 295 and 281 nmol/L) than at α2- and α3-containing receptors (EC50 1737 and 2089 nmol/L). Compared with chlordiazepoxide-a nonselective, full GABAA R agonist-the relative efficacy of padsevonil was 60% for α1β2γ2, 26% for α2β2γ2, 56% for α3β2γ2, and 41% for α5β2γ2; no activity was observed at benzodiazepine-insensitive α4β2γ2 receptors.
Significance: Results of functional investigations on recombinant and native neuronal GABAA Rs show that padsevonil acts as a positive allosteric modulator of these receptors, with a partial agonist profile at the benzodiazepine site. These properties may confer better tolerability and lower potential for tolerance development compared with classic benzodiazepines currently used in the clinic.

Padsevonil randomized Phase IIa trial in treatment-resistant focal epilepsy: a translational approach

Therapeutic options for patients with treatment-resistant epilepsy represent an important unmet need. Addressing this unmet need was the main factor driving the drug discovery program that led to the synthesis of padsevonil, a first-in-class antiepileptic drug candidate that interacts with two therapeutic targets: synaptic vesicle protein 2 and GABAA receptors. Two PET imaging studies were conducted in healthy volunteers to identify optimal padsevonil target occupancy corresponding to levels associated with effective antiseizure activity in rodent models. Optimal padsevonil occupancy associated with non-clinical efficacy was translatable to humans for both molecular targets: high (>90%), sustained synaptic vesicle protein 2A occupancy and 10-15% transient GABAA receptor occupancy. Rational dose selection enabled clinical evaluation of padsevonil in a Phase IIa proof-of-concept trial (NCT02495844), with a single-dose arm (400 mg bid). Adults with highly treatment-resistant epilepsy, who were experiencing ≥4 focal seizures/week, and had failed to respond to ≥4 antiepileptic drugs, were randomized to receive placebo or padsevonil as add-on to their stable regimen. After a 3-week inpatient double-blind period, all patients received padsevonil during an 8-week outpatient open-label period. The primary endpoint was ≥75% reduction in seizure frequency. Of 55 patients randomized, 50 completed the trial (placebo n = 26; padsevonil n = 24). Their median age was 36 years (range 18-60), and they had been living with epilepsy for an average of 25 years. They were experiencing a median of 10 seizures/week and 75% had failed ≥8 antiepileptic drugs. At the end of the inpatient period, 30.8% of patients on padsevonil and 11.1% on placebo were ≥75% responders (odds ratio 4.14; P = 0.067). Reduction in median weekly seizure frequency was 53.7% and 12.5% with padsevonil and placebo, respectively (unadjusted P = 0.026). At the end of the outpatient period, 31.4% were ≥75% responders and reduction in median seizure frequency was 55.2% (all patients). During the inpatient period, 63.0% of patients on placebo and 85.7% on padsevonil reported treatment-emergent adverse events. Overall, 50 (90.9%) patients who received padsevonil reported treatment-emergent adverse events, most frequently somnolence (45.5%), dizziness (43.6%) and headache (25.5%); only one patient discontinued due to a treatment-emergent adverse event. Padsevonil was associated with a favourable safety profile and displayed clinically meaningful efficacy in patients with treatment-resistant epilepsy. The novel translational approach and the innovative proof-of-concept trial design maximized signal detection in a small patient population in a short duration, expediting antiepileptic drug development for the population with the greatest unmet need in epilepsy.

Pharmacological Profile of the Novel Antiepileptic Drug Candidate Padsevonil: Characterization in Rodent Seizure and Epilepsy Models

The antiepileptic drug (AED) candidate, (4R)-4-(2-chloro-2,2-difluoroethyl)-1-{[2-(methoxymethyl)-6-(trifluoromethyl)imidazo[2,1-b][1,3,4]thiadiazol-5-yl]methyl}pyrrolidin-2-one (padsevonil), is the first in a novel class of drugs that bind to synaptic vesicle protein 2 (SV2) proteins and the GABAA receptor benzodiazepine site, allowing for pre- and postsynaptic activity, respectively. In acute seizure models, padsevonil provided potent, dose-dependent protection against seizures induced by administration of pilocarpine or 11-deoxycortisol, and those induced acoustically or through 6 Hz stimulation; it was less potent in the pentylenetetrazol, bicuculline, and maximal electroshock models. Padsevonil displayed dose-dependent protective effects in chronic epilepsy models, including the intrahippocampal kainate and Genetic Absence Epilepsy Rats from Strasbourg models, which represent human mesial temporal lobe and absence epilepsy, respectively. In the amygdala kindling model, which is predictive of efficacy against focal to bilateral tonic-clonic seizures, padsevonil provided significant protection in kindled rodents; in mice specifically, it was the most potent AED compared with nine others with different mechanisms of action. Its therapeutic index was also the highest, potentially translating into a favorable efficacy and tolerability profile in humans. Importantly, in contrast to diazepam, tolerance to padsevonil's antiseizure effects was not observed in the pentylenetetrazol-induced clonic seizure threshold test. Further results in the 6 Hz model showed that padsevonil provided significantly greater protection than the combination of diazepam with either 2S-(2-oxo-1-pyrrolidinyl)butanamide (levetiracetam) or 2S-2-[(4R)-2-oxo-4-propylpyrrolidin-1-yl] butanamide (brivaracetam), both selective SV2A ligands. This observation suggests that padsevonil's unique mechanism of action confers antiseizure properties beyond the combination of compounds targeting SV2A and the benzodiazepine site. Overall, padsevonil displayed robust efficacy across validated seizure and epilepsy models, including those considered to represent drug-resistant epilepsy. SIGNIFICANCE STATEMENT: Padsevonil, a first-in-class antiepileptic drug candidate, targets SV2 proteins and the benzodiazepine site of GABAA receptors. It demonstrated robust efficacy across a broad range of rodent seizure and epilepsy models, several representing drug-resistant epilepsy. Furthermore, in one rodent model, its efficacy extended beyond the combination of drugs interacting separately with SV2 or the benzodiazepine site. Padsevonil displayed a high therapeutic index, potentially translating into a favorable safety profile in humans; tolerance to antiseizure effects was not observed.