Home>>Signaling Pathways>> DNA Damage/DNA Repair>> DNA/RNA Synthesis>>PCLX-001

PCLX-001 Sale

目录号 : GC65891

PCLX-001 是一种具有口服活性的小分子 N- 肉豆蔻转移酶 (NMT) 抑制剂,对 NMT1 和 NMT2 的 IC50 分别为 5 nM 和 8 nM。PCLX-001 具有抗癌活性、抑制早期 B 细胞受体 (BCR) 信号,可用于对恶性淋巴瘤的研究。

PCLX-001 Chemical Structure

Cas No.:1215011-08-7

规格 价格 库存 购买数量
10mg
¥10,350.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PCLX-001 is an orally acitve, small-molecule, dual N-myristoyltransferase (NMT) inhibitor, with IC50s of 5 nM (NMT1) and 8 nM (NMT2), respectively. PCLX-001 exhibits anti-tumor activity and inhibits early B-cell receptor (BCR) signaling, can be used to B-cell malignancies research[1][2].

Chemical Properties

Cas No. 1215011-08-7 SDF Download SDF
分子式 C24H30Cl2N6O2S 分子量 537.51
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.8604 mL 9.3022 mL 18.6043 mL
5 mM 0.3721 mL 1.8604 mL 3.7209 mL
10 mM 0.186 mL 0.9302 mL 1.8604 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Novel, First-in-Human, Oral PCLX-001 Treatment in a Patient with Relapsed Diffuse Large B-Cell Lymphoma

Curr Oncol 2022 Mar 13;29(3):1939-1946.PMID:35323358DOI:10.3390/curroncol29030158.

Patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) have limited treatment options, particularly if they are transplantation or chimeric antigen receptor (CAR) T-cell ineligible, and novel therapeutics are needed. An 86-year-old woman with relapsed DLBCL received a novel, first-in-class small molecule inhibitor of N-myristoyltransferase (NMT) as the initial patient on a phase I dose escalation trial. Daily oral administration of 20 mg PCLX-001 tablets produced a pharmacokinetic profile suitable for single daily dosing: rapid oral absorption, followed by an apparent elimination half-life of 16 h, without systemic accumulation of drug by day 15. Pharmacodynamic tests showed no clear change in NMT1 and NMT2 levels or selected NMT substrate Lyn and HGAL protein levels in normal circulating blood mononuclear cells, suggesting a higher dose will be required for normal tissue toxicity. The patient did not experience any dose-limiting toxicities but had disease progression after 28 days of study therapy. Dose escalation continues in other patients in this first-in-human study of a new class of anticancer drug. We conclude that PCLX-001 oral monotherapy has suitable pharmacokinetic parameters for dose escalation, and that higher doses are required to achieve pharmacodynamic evidence of on-target activity in normal tissues. The current protocol is appropriately designed to achieve these ends, and the study proceeds without modification.

Targeting N-myristoylation for therapy of B-cell lymphomas

Nat Commun 2020 Oct 22;11(1):5348.PMID:33093447DOI:10.1038/s41467-020-18998-1.

Myristoylation, the N-terminal modification of proteins with the fatty acid myristate, is critical for membrane targeting and cell signaling. Because cancer cells often have increased N-myristoyltransferase (NMT) expression, NMTs were proposed as anti-cancer targets. To systematically investigate this, we performed robotic cancer cell line screens and discovered a marked sensitivity of hematological cancer cell lines, including B-cell lymphomas, to the potent pan-NMT inhibitor PCLX-001. PCLX-001 treatment impacts the global myristoylation of lymphoma cell proteins and inhibits early B-cell receptor (BCR) signaling events critical for survival. In addition to abrogating myristoylation of Src family kinases, PCLX-001 also promotes their degradation and, unexpectedly, that of numerous non-myristoylated BCR effectors including c-Myc, NFκB and P-ERK, leading to cancer cell death in vitro and in xenograft models. Because some treated lymphoma patients experience relapse and die, targeting B-cell lymphomas with a NMT inhibitor potentially provides an additional much needed treatment option for lymphoma.

N-myristoyltransferase proteins in breast cancer: prognostic relevance and validation as a new drug target

Breast Cancer Res Treat 2021 Feb;186(1):79-87.PMID:33398478DOI:10.1007/s10549-020-06037-y.

Purpose: N-myristoyltransferases 1 and 2 (NMT1 and NMT2) catalyze the addition of 14-carbon fatty acids to the N-terminus of proteins. Myristoylation regulates numerous membrane-bound signal transduction pathways important in cancer biology and the pan-NMT inhibitor PCLX-001 is approaching clinical development as a cancer therapy. The tissue distribution, relative abundances, and prognostic value of the two human NMTs remain poorly understood. Methods: We generated and validated mutually exclusive monoclonal antibodies (mAbs) specific to human NMT1 and NMT2. These mAbs were used to perform immunohistochemical analysis of the abundance and distribution of NMT1 and NMT2 in normal breast epithelial samples and a large cohort of primary breast adenocarcinomas from the BCIRG001 clinical trial (n = 706). Results: NMT1 protein was readily quantified in normal and most transformed breast epithelial tissue and was associated with higher overall histologic grade, higher Ki67, and lower hormone receptor expression. While NMT2 protein was readily detected in normal breast epithelial tissue, it was undetectable in the majority of breast cancers. Detectable NMT2 protein correlated with significantly poorer overall survival (hazard ratio 1.36; P = 0.029) and worse biological features including younger age, higher histologic grade, lower hormone receptor expression, higher Ki67, and p53 positivity. Treatment of cultured breast cancer cells with PCLX-001 reduced cell viability in vitro. Daily oral administration of PCLX-001 to immunodeficient mice bearing human MDA-MB-231 breast cancer xenografts produced significant dose-dependent tumor growth inhibition in vivo. Conclusions: These results support further evaluation of NMT immunohistochemistry for patient selection and clinical trials of NMT inhibition in breast cancer patients.