PD 168368
目录号 : GC44584An antagonist of NMB receptors
Cas No.:204066-82-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
PD 168368 is a competitive antagonist of neuromedin B (NMB) receptors (Kis = 15-45 nM for rat and human receptors expressed in various cell lines). It blocks the elevation of intracellular calcium and release of inositol phosphate induced by NMB in cells expressing NMB receptors. PD 168368 is selective for NMB receptors over those for related peptide agonists, including bombesin and gastrin-releasing peptide. It is also an agonist of formyl-peptide receptors (FPRs) at higher concentrations (EC50s = 0.57 and 0.24 µM for FPR1 and FPR2, respectively). PD 168368 induces cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells and blocks neovascularization and cancer cell growth in breast cancer xenograft tumors in mice.
Cas No. | 204066-82-0 | SDF | |
Canonical SMILES | O=C(NCC1(CCCCC1)C2=CC=CC=N2)[C@@](C)(NC(NC3=CC=C(C=C3)[N+]([O-])=O)=O)CC4=CNC5=C4C=CC=C5 | ||
分子式 | C31H34N6O4 | 分子量 | 554.6 |
溶解度 | DMF: 10 mg/mL,DMSO: 30 mg/mL,DMSO:PBS(pH 7.2) (1:2): 0.3 mg/mL | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.8031 mL | 9.0155 mL | 18.031 mL |
5 mM | 0.3606 mL | 1.8031 mL | 3.6062 mL |
10 mM | 0.1803 mL | 0.9016 mL | 1.8031 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Comparative pharmacology of the nonpeptide neuromedin B receptor antagonist PD 168368
J Pharmacol Exp Ther 1999 Sep;290(3):1202-11.PMID:10454496doi
The mammalian peptide neuromedin B (NMB) and its receptor are expressed in a variety of tissues; however, little is definitively established about its physiological actions because of the lack of potent, specific antagonists. Recently, the peptoid PD 168368 was found to be a potent human NMB receptor antagonist. Because it had been shown previously that either synthetic analogs of bombesin (Bn) or other receptor peptoid or receptor antagonists function as an antagonist or agonist depends on animal species and receptor subtype studied, we investigated the pharmacological properties of PD 168368 compared with all currently known Bn receptor subtypes (NMB receptor, gastrin-releasing peptide receptor, Bn receptor subtype 3, and Bn receptor subtype 4) from human, mouse, rat, and frog. In binding studies, PD 168368 had similar high affinities (K(i) = 15-45 nM) for NMB receptors from each species examined, 30- to 60-fold lower affinity for gastrin-releasing peptide receptors, and >300-fold lower affinity for Bn receptor subtype 3 or 4. It inhibited NMB binding in a competitive manner. PD 168368 alone did not stimulate increases in either intracellular calcium concentration or [(3)H]inositol phosphates in any of the cells studied but inhibited NMB-induced responses with equivalent potencies in cells containing NMB receptors. PD 168368 was only minimally soluble in water. When hydroxypropyl-beta-cyclodextrin rather than dimethyl sulfoxide was used as the vehicle, both the affinity and the antagonist potency of PD 168368 were significantly greater. The results demonstrate that PD 168368 is a potent, competitive, and selective antagonist at NMB receptors, with a similar pharmacology across animal species. PD 168368 should prove useful for delineating the biological role of NMB and selectively blocking NMB signaling in bioassays and as a lead for the development of more selective nonpeptide antagonists for the NMB receptor.