Home>>Signaling Pathways>> Apoptosis>>PDMP (hydrochloride)

PDMP (hydrochloride)

(Synonyms: DL-erythro/threo-PDMP) 目录号 : GC44587

An inhibitor of sphingolipid biosynthesis

PDMP (hydrochloride) Chemical Structure

Cas No.:73257-80-4

规格 价格 库存 购买数量
10mg
¥793.00
现货
25mg
¥1,856.00
现货
50mg
¥3,505.00
现货
100mg
¥6,583.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PDMP is a ceramide analog first prepared in a search for inhibitors of glucosylceramide synthase. PDMP has two adjacent chiral centers (C1 and C2) allowing for the formation of four possible isomers. PDMP contains all four of these stereoisomers. PDMP inhibits glucosylceramide synthase by 90% when used at a concentration of 0.8 μM in MDCK cell homogenates, however, the ability to inhibit glucosylceramide synthase has been found to reside in the D-threo (1R,2R) enantiomer. The D-threo PDMP enantiomer is also responsible for inhibition of β-1,4-galactosyltransferase 6 and prevention of lactosylceramide synthesis, which is a promotor of neuroinflammation in mice during chronic experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. PDMP enhances curcumin-induced inhibition of proliferation, JNK activation, and Akt inhibition, as well as induction of apoptosis in WM-115 melanoma cells in vitro.

Chemical Properties

Cas No. 73257-80-4 SDF
别名 DL-erythro/threo-PDMP
Canonical SMILES CCCCCCCCCC(N([H])C(C(O)C1=CC=CC=C1)CN2CCOCC2)=O.Cl
分子式 C23H38N2O3•HCl 分子量 427
溶解度 DMF: 25 mg/ml,DMSO: 30 mg/ml,Ethanol: 50 mg/ml,Ethanol:PBS(pH 7.2)(1:5): .05 mg/ml 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.3419 mL 11.7096 mL 23.4192 mL
5 mM 0.4684 mL 2.3419 mL 4.6838 mL
10 mM 0.2342 mL 1.171 mL 2.3419 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

[Effect of PDMP, a glucosylceramide synthase inhibitor, on reversion of daunorubicin resistance in human leukemia cell line K562/A02]

Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010 Feb;18(1):79-84.PMID:20137123doi

This study was purposed to investigate the reversal effect of glucosylceramide synthase (GCS) inhibitor D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) hydrochloride, on multidrug resistance in K562/A02 cells and its mechanism. The IC(50) (the half maximal inhibitory concentration) of PDMP was measured by MTT method. Cell apoptosis and intracellular daunorubicin (DNR) concentration were detected by flow cytometry. The expression of GCS and mdr1 genes were assayed by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot. The results showed that the IC(50) of DNR in K562 and K562/A02 cells were 0.23 +/- 0.02 and 7.15 +/- 0.24 microg/ml respectively. When the concentration of PDMP was equal to or less than 20 micromol/L ( < / = 20 micromol/L), the obviously inhibitory effect on proliferation of K562 and K562/A02 cells was not observed, but both 20 micromol/L and 10 micromol/L PDMP could enhance the sensitivity of K562/A02 cells to DNR (p < 0.01) and the reversal multiples were 2.59 and 1.69 respectively. After treating with 20 micromol/L and 10 micromol/L PDMP for 48 hours, the concentration of DNR in K562/A02 cells increased (p < 0.05) and the apoptotic rate also was elevated (p < 0.01). The expressions of GCS and mdr1 genes were down-regulated at mRNA and protein levels after treating K562/A02 cells with 20 micromol/L PDMP for 48 hours. It is concluded that PDMP can enhance the sensitivity of K562/A02 cells to DNR by increasing cell apoptosis rate and accumulation concentration of DNR in cells, which may be related to down-regulated expressions of GCS and mdr1 genes.

Effect of D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol and tetrandrine on the reversion of multidrug resistance in K562/A02 cells

Hematology 2011 Jan;16(1):24-30.PMID:21269564DOI:10.1179/102453311X12902908411797.

In this study, we applied D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) hydrochloride as a chemical inhibitor for glucosylceramide synthase (GCS) and tetrandrine (Tet) for P-glycoprotein (P-gp) to reverse daunorubicin (DNR) resistance of human leukemia cell line K562/A02. Cytotoxicity assays showed that either PDMP or Tet enhanced cytotoxic effect of DNR on K562/A02 cells, while cotreatment of these two drugs had a more significant effect on chemosensitization. Using flow cytometric analysis, we confirmed that the enhancement effect was accompanied by elevated cellular DNR accumulation and DNR-induced apoptosis. According to reverse transcription-polymerase chain reaction and western blot, the reversal effect of that composite might owe to the significant downregulation of mdr1 and GCS gene expressions. Importantly, PDMP diminished mdr1 gene expression and Tet also downregulated GCS gene expression. Moreover, a positive correlation was observed between GCS and P-gp. Thus, our results suggest that a potential clinical application of PDMP in combination with Tet may enhance chemosensitivity in leukemia.

An increase in glucosylceramide synthase induces Bcl-xL-mediated cell survival in vinorelbine-resistant lung adenocarcinoma cells

Oncotarget 2015 Aug 21;6(24):20513-24.PMID:26001295DOI:10.18632/oncotarget.4109.

Reversing drug resistance with concurrent treatment confers anticancer benefits. In this study, we investigated the potential mechanism of glucosylceramide synthase (GCS)-mediated vinca alkaloid vinorelbine (VNR) resistance in human lung adenocarcinoma cells. Compared with PC14PE6/AS2 (AS2) and CL1-0 cells, apoptotic analysis showed that both A549 and CL1-5 cells were VNR-resistant, while these cells highly expressed GCS at the protein level. VNR treatment significantly converts ceramide to glucosylceramide in VNR-resistant cells; however, pharmacologically inhibiting GCS with (±)-threo-1-Phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride (PDMP) induced ceramide accumulation, accompanied by a decrease in glucosylceramide. Under concurrent treatment with VNR and PDMP, an increase in cell apoptosis could be identified; furthermore, genetically silencing GCS confirmed these effects. In VNR-resistant cells, Bcl-xL expression was aberrantly increased, while pharmacologically inhibiting Bcl-xL with ABT-737 sensitized cells to VNR-induced apoptosis. Conversely, enforced expression of Bcl-xL strengthened the survival response of the VNR-susceptible cells AS2 and CL1-0. Without changes in mRNA expression, Bcl-xL was overexpressed independent of β-catenin-mediated transcriptional regulation in VNR-resistant cells. Simultaneous GCS inhibition and VNR treatment caused a decrease in Bcl-xL expression. According to these findings, an increase in GCS caused Bcl-xL augmentation, facilitating VNR resistance in lung adenocarcinoma cells.

Inhibition of ceramide metabolism sensitizes human leukemia cells to inhibition of BCL2-like proteins

PLoS One 2013;8(1):e54525.PMID:23342165DOI:10.1371/journal.pone.0054525.

The identification of novel combinations of effective cancer drugs is required for the successful treatment of cancer patients for a number of reasons. First, many "cancer specific" therapeutics display detrimental patient side-effects and second, there are almost no examples of single agent therapeutics that lead to cures. One strategy to decrease both the effective dose of individual drugs and the potential for therapeutic resistance is to combine drugs that regulate independent pathways that converge on cell death. BCL2-like family members are key proteins that regulate apoptosis. We conducted a screen to identify drugs that could be combined with an inhibitor of anti-apoptotic BCL2-like proteins, ABT-263, to kill human leukemia cells lines. We found that the combination of D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) hydrochloride, an inhibitor of glucosylceramide synthase, potently synergized with ABT-263 in the killing of multiple human leukemia cell lines. Treatment of cells with PDMP and ABT-263 led to dramatic elevation of two pro-apoptotic sphingolipids, namely ceramide and sphingosine. Furthermore, treatment of cells with the sphingosine kinase inhibitor, SKi-II, also dramatically synergized with ABT-263 to kill leukemia cells and similarly increased ceramides and sphingosine. Data suggest that synergism with ABT-263 requires accumulation of ceramides and sphingosine, as AMP-deoxynojirimycin, (an inhibitor of the glycosphingolipid pathway) did not elevate ceramides or sphingosine and importantly did not sensitize cells to ABT-263 treatment. Taken together, our data suggest that combining inhibitors of anti-apoptotic BCL2-like proteins with drugs that alter the balance of bioactive sphingolipids will be a powerful combination for the treatment of human cancers.

GM3 content modulates the EGF-activated p185c-neu levels, but not those of the constitutively activated oncoprotein p185neu

Biochim Biophys Acta 2003 Dec 30;1635(2-3):55-66.PMID:14729068DOI:10.1016/j.bbalip.2003.10.006.

The functional relationship between ganglioside GM(3) and two tyrosine-kinase receptors, the normal protein p185(c-neu) and the mutant oncogenic protein p185(neu), was examined in HC11 cells and in MG1361 cells, respectively. In the former, p185(c-neu) expression and activation are controlled by EGF addition to the culture medium and by epidermal growth factor receptor (EGFR) activity, whereas the latter express unchangingly high levels of constitutively activated p185(neu). Studies were carried out using (+/-)-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ganglioside biosynthesis resulting in ganglioside depletion, and addition of exogenous GM(3) to the culture medium. In HC11 cells treated with only [D]-PDMP, p185(c-neu) levels remain similar to control cells, whereas levels of tyrosine-phosphorylated p185(c-neu) increase after treatment with [D]-PDMP in combination with EGF. When exogenous GM(3) is added in combination with [D]-PDMP and EGF, the enhanced phosphorylated-p185(c-neu) returns to control levels. Interestingly, EGFR levels also vary and, analogously to phosphorylated-p185(c-neu), the increase of EGFR content consequent to the [D]-PDMP and EGF addition is reversed by exogenous GM(3). In contrast, the addition of neither [D]-PDMP nor exogenous GM(3) modifies expression and tyrosine-phosphorylation levels of p185(neu) in MG1361 cells. These findings indicate that changes in GM(3) content modulate the tyrosine-phosphorylated p185(c-neu) levels in a reversible manner, but this is not specific for p185(c-neu) because EGFR levels are also modified. Furthermore, these data suggest that GM(3) may play a functional role by affecting the internalisation pathway of p185(c-neu)/EGFR heterodimers, but not of p185(neu) homodimers.