Home>>Signaling Pathways>> PROTAC>>Pentaethylene glycol

Pentaethylene glycol Sale

(Synonyms: 五甘醇) 目录号 : GC61170

Pentaethyleneglycol是一种PROTAClinker,属于PEG类。可用于合成PROTAC分子。

Pentaethylene glycol Chemical Structure

Cas No.:4792-15-8

规格 价格 库存 购买数量
500mg
¥252.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Pentaethylene glycol is a PEG-based PROTAC linker that can be used in the synthesis of PROTACs[1].

PROTACs contain two different ligands connected by a linker; one is a ligand for an E3 ubiquitin ligase and the other is for the target protein. PROTACs exploit the intracellular ubiquitin-proteasome system to selectively degrade target proteins[1].

[1]. An S, et al. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine. 2018 Oct;36:553-562

Chemical Properties

Cas No. 4792-15-8 SDF
别名 五甘醇
Canonical SMILES OCCOCCOCCOCCOCCO
分子式 C10H22O6 分子量 238.28
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 4.1967 mL 20.9837 mL 41.9674 mL
5 mM 0.8393 mL 4.1967 mL 8.3935 mL
10 mM 0.4197 mL 2.0984 mL 4.1967 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Polymer-supported Pentaethylene glycol as a facile heterogeneous catalyst for nucleophilic fluorination

Org Lett 2010 Sep 3;12(17):3740-3.PMID:20684535DOI:10.1021/ol101485n.

Polymer-supported pentaethylene glycols (PSpentaEG) as promising catalysts for nucleophilic fluorination with alkali metal fluoride (MF) could significantly enhance the nucleophilicity of MF and provide simple purification and recycling in the reaction. Furthermore, by their synergistic effect, the combination of PSpentaEG and a tert-alcohol media system showed tremendous efficiency in the fluorination of base-sensitive substrates such as sec-alkyl halide.

Interaction between Pentaethylene glycol n-octyl ether and low-molecular-weight poly(acrylic acid)

J Colloid Interface Sci 2004 Feb 15;270(2):490-5.PMID:14697717DOI:10.1016/j.jcis.2003.09.027.

The interaction between Pentaethylene glycol n-octyl ether (C8E5) and low-molecular-weight poly(acrylic acid) (PAA, M(w)=2000) in aqueous solution has been investigated by various experimental techniques at constant polymer concentration (0.1% w/w) with varying surfactant molality. Spectrofluorimetry, using pyrene as molecular probe, shows (i) the formation of surfactant-polymer aggregates at a surfactant molality (T(1)) lower than the critical micelle concentration (cmc) of C8E5 in water and (ii) the formation of free micelles at a surfactant molality (T(2)) slightly higher than the cmc. Fluorescence quenching measurements indicate that the presence of PAA induces a lowering of the C8E5 aggregation number. Calorimetry confirms spectrofluorimetric evidence; in addition, it shows the presence of weak interactions below T(1) between monomeric surfactant molecules and the polymer chains. Tensiometry shows that, above T(1), only a low fraction of surfactant molecules interact with the polymer and that free micelle formation occurs before polymer saturation. The peculiarities of the interaction between surfactants and low-molecular-weight polymers have been discussed.

Structure of the human Tim44 C-terminal domain in complex with Pentaethylene glycol: ligand-bound form

Acta Crystallogr D Biol Crystallogr 2007 Dec;63(Pt 12):1225-34.PMID:18084070DOI:10.1107/S0907444907051463.

Familial oncocytic thyroid carcinoma is associated with a missense mutation, P308Q, in the C-terminal domain of Tim44. Tim44 is the mitochondrial inner-membrane translocase subunit and it functions as a membrane anchor for the mitochondrial heat-shock protein 70 (mtHsp70). Here, the crystal structure of the human Tim44 C-terminal domain complexed with Pentaethylene glycol has been determined at 1.9 A resolution. The overall structure resembles that of the nuclear transport factor 2-like domain. In the crystal structure, Pentaethylene glycol molecules are associated at two potential membrane-binding sites: the large hydrophobic cavity and the highly conserved loop between the alpha1 and alpha2 helices near Pro308. A comparison with the yeast homolog revealed that lipid binding induces conformational changes around the alpha1-alpha2 loop, leading to slippage of the alpha1 helix along the large beta-sheet. These changes may play important roles in the translocation of polypeptides across the mitochondrial inner membrane.

Potassium fluoride activation for the nucleophilic fluorination reaction using 18-crown-6, [2.2.2]-cryptand, Pentaethylene glycol and comparison with the new hydro-crown scaffold: a theoretical analysis

Org Biomol Chem 2018 May 2;16(17):3127-3137.PMID:29568839DOI:10.1039/C8OB00418H.

Activation of potassium fluoride salt for selective and fast nucleophilic fluorination requires its solubilization and stabilization of the respective transition state. This goal can be achieved through control of the nano-environment around the reactants via cation or ion-pair binding catalysis. In this work, six different species were theoretically investigated as promoters and catalysts for nucleophilic fluorination: tri-tert-butanolamine, 18-crown-6, Pentaethylene glycol, [2.2.2]-cryptand, and two new hydroxylated crown ethers (hydro-crowns). Calculations using the PBE functional and the LPNO-CEPA method, as well as the SMD continuum model, were carried out for the SN2 reaction of KF with ethyl bromide in toluene solution as a model system. The present study points out that [2.2.2]-cryptand is the most effective promoter of the reaction when using stoichiometric quantities. In the case of a catalytic process, the new DB18C6-4OH is the most effective molecule considering only a 1 : 1 complex. The hydroxyl groups are important for the solubilization of potassium fluoride and for the catalytic cycle. Nevertheless, the DB18C6-4OH hydro-crown can form a 2 : 2 complex and is needed to add bulk groups close to the hydroxyls to avoid dimerization. The calculated overall free energy of activation for reactions promoted by 18-crown-6, Pentaethylene glycol, and [2.2.2]-cryptand is in good agreement with the experimental data.

Kinetics of phase separation and coarsening in dilute surfactant Pentaethylene glycol monododecyl ether solutions

J Chem Phys 2011 Dec 21;135(23):234503.PMID:22191882DOI:10.1063/1.3668349.

We investigated the phase separation phenomena in dilute surfactant Pentaethylene glycol monodedecyl ether (C(12)E(5)) solutions focusing on the growth law of separated domains. The solutions confined between two glass plates were found to exhibit the phase inversion, characteristic of the viscoelastic phase separation; the majority phase (water-rich phase) nucleated as droplets and the minority phase (micelle-rich phase) formed a network temporarily, then they collapsed into an usual sea-island pattern where minority phase formed islands. We found from the real-space microscopic imaging that the dynamic scaling hypothesis did not hold throughout the coarsening process. The power law growth of the domains with the exponent close to 1/3 was observed even though the coarsening was induced mainly by hydrodynamic flow, which was explained by Darcy's law of laminar flow.