Home>>Signaling Pathways>> Proteases>> Cathepsin>>Petesicatib

Petesicatib Sale

目录号 : GC31856

Petesicatib是一种cathepsinS抑制剂,可用于免疫疾病研究。

Petesicatib Chemical Structure

Cas No.:1252637-35-6

规格 价格 库存 购买数量
100mg
¥35,550.00
现货
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Petesicatib is a cathepsin S inhibitor, used in research of immune diseases[1].

Petesicatib (Example 238) is a cathepsin S inhibitor, used in research of immune diseases[1].

[1]. Rubén Alvarez Sánchez, et al. Novel proline derivatives. US20100267722A1

Chemical Properties

Cas No. 1252637-35-6 SDF
Canonical SMILES O=C(N1[C@@H](C[C@@H](S(=O)(C2=C(C=C(C3=CN(C)N=C3)C=C2)C(F)(F)F)=O)C1)C(NC4(CC4)C#N)=O)C5(CC5)C(F)(F)F
分子式 C25H23F6N5O4S 分子量 603.54
溶解度 DMSO : 125 mg/mL (207.11 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.6569 mL 8.2845 mL 16.5689 mL
5 mM 0.3314 mL 1.6569 mL 3.3138 mL
10 mM 0.1657 mL 0.8284 mL 1.6569 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Sj?gren's syndrome: Old and new therapeutic targets

Sj?gren's syndrome (SS) is a prototype autoimmune disease characterized by oral and ocular mucosal dryness following chronic inflammation of salivary and lachrymal glands, respectively. Profound B cell hyperactivity along with systemic manifestations including fatigue, musculoskeletal complaints, features related to hepatic, pulmonary, renal and nervous system involvement, as well as lymphoma development can be also present. Despite that activation of both innate and adaptive immune pathways has been long well documented in SS pathogenesis, systemic immunosuppression in SS, in contrast to other autoimmune diseases, has been largely inefficacious. Biological agents previously implemented in successful therapeutic outcomes in rheumatoid arthritis (RA), such as anti-TNF agents, anakinra, tocilizumab and rituximab failed to reach primary outcomes in randomized double-blind controlled trials in the context of SS. Abatacept and belimumab, already licensed for the treatment of RA and lupus respectively, as well combination regimens of both rituximab and belimumab hold some promise in alleviation of SS-specific complaints, but data from large controlled trials are awaited. Recent advances in dissecting the molecular pathways underlying SS pathogenesis led to an expanding number of novel biological compounds directed towards type I interferon system, antigen presentation, costimulatory pathways, B and T cell activation, as well as germinal center formation. While targeting of cathepsin-S (Petesicatib), inducible costimulator of T cells ligand (prezalumab), and lymphotoxin beta receptor (baminercept) failed to fulfil the primary outcome measures, preliminary results from two randomized placebo controlled trials on CD40 blockade (Iscalimab) and B-cell activating factor receptor (Ianalumab) inhibition resulted in significant reduction of SS disease activity, with a favorable so far safety profile. Results from administration of other kinase inhibitors, a transmembrane activator and calcium-modulator and cytophilin ligand interactor TACI fusion protein (RC18), as well as low dose recombinant interleukin-2 to expand T-regulatory cells are currently awaited.

Population pharmacokinetic analysis of RO5459072, a low water-soluble drug exhibiting complex food-drug interactions

Aims: RO5459072, a cathepsin-S inhibitor, Biopharmaceutics Classification System class 2 and P-glycoprotein substrate, exhibited complex, nonlinear pharmacokinetics (PK) while fasted that seemed to impact both the absorption and the disposition phases. When given with food, all nonlinearities disappeared. Physiologically based PK (PBPK) modelling attributed those nonlinearities to dose-dependent solubilisation and colonic absorption. The objective of this population PK analysis was to complement the PBPK analysis.
Methods: PK profiles in 39 healthy volunteers after first oral dosing (1-600 mg) while fasted or fed in single and multiple ascending dose studies were analysed using population compartmental modelling.
Results: The PK of RO5459072 while fed was characterized by a 1-compartmental PK model with linear absorption and elimination. The nonlinearities while fasted were captured using dose dependent bioavailability and 2 sequential first-order absorption phases: one following drug administration and one occurring 11 hours later and only for doses >10 mg. The bioavailability in the first absorption phase increased between 1 and 10 mg and then decreased with dose, in agreement with in vitro dissolution and solubility studies. The remaining fraction of doses to be absorbed by the second absorption phase was found to have a bioavailability similar to that in the first absorption phase.
Conclusion: The population PK model supported that dissolution- and solubility-limited absorption from the proximal and distal intestine alone explains the nonlinear PK of RO5459072 in fasted state and the linear PK in fed state. This work, together with the PBPK analysis, raised our confidence in the understanding of this complex PK.

Differential effects of specific cathepsin S inhibition in biocompartments from patients with primary Sj?gren syndrome

Objective: Primary Sj?gren syndrome (pSS) is characterized by T and B cell infiltration of exocrine glands. The cysteine protease cathepsin S (CatS) is crucially involved in MHCII processing and T cell stimulation, and elevated levels have been found in patients with RA, psoriasis and pSS. However, little is known about the functional characteristics and mechanisms of SS-A- and SS-B-specific T cells in pSS patients. We herein investigated the inhibition of CatS activity in different biocompartments of pSS patients including antigen-specific T cell responses.
Methods: Ex vivo CatS activity was assessed in tears, plasma and saliva of 15 pSS patients and 13 healthy controls (HC) and in the presence or absence of the specific CatS inhibitor RO5459072. In addition, antigen (SS-A (60kD), SS-B, influenza H3N2, tetanus toxoid and SEB)-specific T cell responses were examined using ex vivo IFN-γ/IL-17 Dual ELISPOT and Bromdesoxyuridin (BrdU) proliferation assays in the presence or absence of RO5459072. Supernatants were analysed for IL-1β, IL-6, IL-10, TNF-α, IL-21, IL-22 and IL-23, using conventional ELISA.
Results: CatS activity was significantly elevated in tear fluid, but not other biocompartments, was inversely associated with exocrinic function in pSS patients and could significantly be suppressed by RO5459072. Moreover, CatS inhibition by RO5459072 led to strong and dose-dependent suppression of SS-A/SS-B-specific T cell effector functions and cytokine secretion by CD14+ monocytes. However, RO5459072 was incapable of suppressing SS-A/SS-B-induced secretion of cytokines in CD14+ monocytes when T cells were absent, confirming a CatS/MHCII-mediated mechanism of suppression.
Conclusion: CatS activity in tear fluid seems to be a relevant biomarker for pSS disease activity. Conversely, CatS inhibition diminishes T cell and associated monokine responses towards relevant autoantigens in pSS. Thus, CatS inhibition may represent a promising novel treatment strategy in pSS.