Phthalic acid
(Synonyms: 邻苯二甲酸) 目录号 : GC39120Phthalic acid (1,2-Benzenedioic acid) is an aromatic dicarboxylic acid. It is a human xenobiotic metabolite.
Cas No.:88-99-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Phthalic acid (1,2-Benzenedioic acid) is an aromatic dicarboxylic acid. It is a human xenobiotic metabolite.
Cas No. | 88-99-3 | SDF | |
别名 | 邻苯二甲酸 | ||
Canonical SMILES | OC(C1=CC=CC=C1C(O)=O)=O | ||
分子式 | C8H6O4 | 分子量 | 166.13 |
溶解度 | DMSO : 33mg/mL | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 6.0194 mL | 30.0969 mL | 60.1938 mL |
5 mM | 1.2039 mL | 6.0194 mL | 12.0388 mL |
10 mM | 0.6019 mL | 3.0097 mL | 6.0194 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Phthalic acid Esters: Natural Sources and Biological Activities
Toxins (Basel) 2021 Jul 16;13(7):495.PMID:34357967DOI:10.3390/toxins13070495.
Phthalic acid esters (PAEs) are a class of lipophilic chemicals widely used as plasticizers and additives to improve various products' mechanical extensibility and flexibility. At present, synthesized PAEs, which are considered to cause potential hazards to ecosystem functioning and public health, have been easily detected in the atmosphere, water, soil, and sediments; PAEs are also frequently discovered in plant and microorganism sources, suggesting the possibility that they might be biosynthesized in nature. In this review, we summarize that PAEs have not only been identified in the organic solvent extracts, root exudates, and essential oils of a large number of different plant species, but also isolated and purified from various algae, bacteria, and fungi. Dominant PAEs identified from natural sources generally include di-n-butyl phthalate, diethyl phthalate, dimethyl phthalate, di(2-ethylhexyl) phthalate, diisobutyl phthalate, diisooctyl phthalate, etc. Further studies reveal that PAEs can be biosynthesized by at least several algae. PAEs are reported to possess allelopathic, antimicrobial, insecticidal, and other biological activities, which might enhance the competitiveness of plants, algae, and microorganisms to better accommodate biotic and abiotic stress. These findings suggest that PAEs should not be treated solely as a "human-made pollutant" simply because they have been extensively synthesized and utilized; on the other hand, synthesized PAEs entering the ecosystem might disrupt the metabolic process of certain plant, algal, and microbial communities. Therefore, further studies are required to elucidate the relevant mechanisms and ecological consequences.
Bacteria-driven Phthalic acid ester biodegradation: Current status and emerging opportunities
Environ Int 2021 Sep;154:106560.PMID:33866059DOI:10.1016/j.envint.2021.106560.
The extensive use of Phthalic acid esters (PAEs) has led to their widespread distribution across various environments. As PAEs pose significant threats to human health, it is urgent to develop efficient strategies to eliminate them from environments. Bacteria-driven PAE biodegradation has been considered as an inexpensive yet effective strategy to restore the contaminated environments. Despite great advances in bacterial culturing and sequencing, the inherent complexity of indigenous microbial community hinders us to mechanistically understand in situ PAE biodegradation and efficiently harness the degrading power of bacteria. The synthetic microbial ecology provides us a simple and controllable model system to address this problem. In this review, we focus on the current progress of PAE biodegradation mediated by bacterial isolates and indigenous bacterial communities, and discuss the prospective of synthetic PAE-degrading bacterial communities in PAE biodegradation research. It is anticipated that the theories and approaches of synthetic microbial ecology will revolutionize the study of bacteria-driven PAE biodegradation and provide novel insights for developing effective bioremediation solutions.
Bacteria-mediated Phthalic acid esters degradation and related molecular mechanisms
Appl Microbiol Biotechnol 2018 Feb;102(3):1085-1096.PMID:29238874DOI:10.1007/s00253-017-8687-5.
Phthalic acid esters (PAEs) have long been known as the most widely used plasticizer with a broad range of industrial application. PAEs are ubiquitous in different environments and our daily life due to their large and widespread application. Recent PAEs research mainly focused on their environmental fate (including leaching, migration, transformation) and toxicology and risk assessment. With the comprehensive recognition of their potential hazard, the elimination of PAEs has attracted worldwide concerns. Although many factors may contribute to the degradation of PAEs, the dominant role of biodegradation was widely reported. Many PAEs-degrading bacteria were isolated, metabolites and metabolic pathways were proposed, and enzymes involved in the degradation were identified. The current paper presents an overview of available reports about PAEs-degrading bacteria and related molecular mechanisms. The metabolic pathways deduced from the identified intermediates were presented. The upstream and downstream pathways of PAEs metabolism were summarized, including the aerobic and anaerobic pathways of Phthalic acid (PA) degradation. Known enzymes involved in the hydrolysis of ester bonds were characterized according to their properties. Based on phylogenetic analysis, all these enzymes were distributed in four families of esterases and one unknown family. For these five families, conserved sequence motifs were identified and the biological properties of these motifs were characterized. Challenges and emerging opportunities are also discussed.
Analysis of Phthalic acid esters in agricultural soils
Environ Monit Assess 2020 Jan 4;192(2):92.PMID:31902037DOI:10.1007/s10661-019-8052-5.
The aim of the study was monitoring of Phthalic acid esters in agricultural soils of the Czech Republic over the period of 6 years, namely dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP). Monitoring took place in twelve regions of the Czech Republic. Soil samples were taken evenly from the top and bottom soil horizons using a zig-zag pattern. Soil samples were taken from arable land, permanent grassland, and hop field. Lyophilisation of the samples was done by ultrasound-assisted extraction using a mixture acetone-hexane (1:1). Phthalic acid esters were analysed using high-performance liquid chromatography with UV detection. Subsequently, the results were statistically compared by analysing the principal components (PCA) to determine the effect of individual factors on the content of Phthalic acid esters in agricultural soil. Factors such as precipitation, distance from a pollution source, amount of pesticides, and amount of artificial and organic fertilizers were taken into account. If we compare the concentrations established in this study with the limits set out in the Methodological Instruction of the Ministry of the Environment of the Czech Republic based on RSLs (Regional Screening Levels) issued by the USEPA (United States Environmental Protection Agency), none of these values were exceeded.
A review on efficient removal of Phthalic acid esters via biochars and transition metals-activated persulfate systems
Chemosphere 2021 Aug;277:130256.PMID:33773311DOI:10.1016/j.chemosphere.2021.130256.
As emerging contaminants, PAEs (Phthalic acid Esters or Phthalate Esters) have been extensively utilized in industrial production to soften the rigid plastics (plasticizers), and their related products are widely distributed in our daily life. The PAEs can readily transfer from the products to the surrounding environment due to not being chemically bound to the products. In this study, we analyzed the PAEs' properties, usage, and consumption in the world, as well as toxicity to human beings. As endocrine-disrupting chemicals (EDCs), PAEs can disturb the normal hormones reactions, resulting in developmental and reproductive problems. Thus, we have to concern the removal strategies of PAEs. We summarized two novel approaches, including biochars and persulfate (PS) oxidation for effectively removing PAEs in the literature. Their characteristics, removal mechanisms, and the main impact factors on the removal of PAEs were highlighted. Moreover, transition metal-activated PS showed good performance on PAEs degradation. Furthermore, the synergy of biochars and transition metals-PS can overcome the disadvantages of a single approach, and show better performance on the removal of PAEs. Finally, we put forward vital strategies to update two approaches (including the combined) for enhancing the removal of PAEs. It is expected that the researchers or scientists can get a hint on effectively remediating PAEs-contaminated sites via the biochars' sorption/transition metals-PS or the combined two from this review paper.