Home>>Signaling Pathways>> Metabolism>> P450>>Piperonylic acid

Piperonylic acid Sale

(Synonyms: 胡椒酸) 目录号 : GC61191

Piperonylicacid是具有亚甲二氧基功能的天然分子,模拟反式肉桂酸的结构。Piperonylicacid是反式肉桂酸4-羟化酶的选择性的灭活剂。

Piperonylic acid Chemical Structure

Cas No.:94-53-1

规格 价格 库存 购买数量
500mg
¥450.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Piperonylic acid is a natural molecule bearing a methylenedioxy function that closely mimics the structure of trans-cinnamic acid. Piperonylic Acid is a selective, mechanism-based inactivator of the trans-cinnamate 4-Hydroxylase[1].

[1]. Schalk M, et al, Werck-Reichhart D. Piperonylic acid, a selective, mechanism-based inactivator of the trans-cinnamate 4-hydroxylase: A new tool to control the flux of metabolites in the phenylpropanoid pathway. Plant Physiol. 1998;118(1):209‐218.

Chemical Properties

Cas No. 94-53-1 SDF
别名 胡椒酸
Canonical SMILES O=C(C1=CC=C(OCO2)C2=C1)O
分子式 C8H6O4 分子量 166.13
溶解度 DMSO : 100 mg/mL (601.94 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.0194 mL 30.0969 mL 60.1938 mL
5 mM 1.2039 mL 6.0194 mL 12.0388 mL
10 mM 0.6019 mL 3.0097 mL 6.0194 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Piperonylic acid alters growth, mineral content accumulation and reactive oxygen species-scavenging capacity in chia seedlings

AoB Plants 2022 May 26;14(3):plac025.PMID:35734448DOI:10.1093/aobpla/plac025.

p-Coumaric acid synthesis in plants involves the conversion of phenylalanine to trans-cinnamic acid via phenylalanine ammonia-lyase (PAL), which is then hydroxylated at the para-position under the action of trans-cinnamic acid 4-hydroxylase. Alternatively, some PAL enzymes accept tyrosine as an alternative substrate and convert tyrosine directly to p-coumaric acid without the intermediary of trans-cinnamic acid. In recent years, the contrasting roles of p-coumaric acid in regulating the growth and development of plants have been well-documented. To understand the contribution of trans-cinnamic acid 4-hydroxylase activity in p-coumaric acid-mediated plant growth, mineral content accumulation and the regulation of reactive oxygen species (ROS), we investigated the effect of Piperonylic acid (a trans-cinnamic acid 4-hydroxylase inhibitor) on plant growth, essential macroelements, osmolyte content, ROS-induced oxidative damage, antioxidant enzyme activities and phytohormone levels in chia seedlings. Piperonylic acid restricted chia seedling growth by reducing shoot length, fresh weight, leaf area measurements and p-coumaric acid content. Apart from sodium, Piperonylic acid significantly reduced the accumulation of other essential macroelements (such as K, P, Ca and Mg) relative to the untreated control. Enhanced proline, superoxide, hydrogen peroxide and malondialdehyde contents were observed. The inhibition of trans-cinnamic acid 4-hydroxylase activity significantly increased the enzymatic activities of ROS-scavenging enzymes such as superoxide dismutase, ascorbate peroxidase, catalase and guaiacol peroxidase. In addition, Piperonylic acid caused a reduction in indole-3-acetic acid and salicylic acid content. In conclusion, the reduction in chia seedling growth in response to Piperonylic acid may be attributed to a reduction in p-coumaric acid content coupled with elevated ROS-induced oxidative damage, and restricted mineral and phytohormone (indole-3-acetic acid and salicylic) levels.

Synthesis and Bioactivities of Novel Piperonylic acid Derivatives Containing a Sulfonic Acid Ester Moiety

Front Chem 2022 May 31;10:913003.PMID:35711958DOI:10.3389/fchem.2022.913003.

The crop loss caused by bacteria has increased year by year due to the lack of effective control agents. In order to develop efficient, broad-spectrum, and structurally simple agricultural bactericide, the structure of Piperonylic acid was modified and a series of novel Piperonylic acid derivatives containing a sulfonic acid ester moiety was synthesized. Bioassay results indicated the compounds exhibited significantly antibacterial activities. Among them, compound 41 exhibited excellent antibacterial activities against Pseudomonas syringae pv. Actinidiae (Psa), with inhibitory value 99 and 85% at 100 μg/ml and 50 μg/ml, respectively, which was higher than that of thiodiazole-copper (84 and 77%) and bismerthiazol (96 and 78%). In addition, some compounds also showed moderate insecticidal activity against Spodoptera frugiperda. The abovementioned results confirm the broadening of the application of Piperonylic acid, with reliable support for the development of novel agrochemical bactericide.

Accelerative action of topical Piperonylic acid on mice full thickness wound by modulating inflammation and collagen deposition

PLoS One 2021 Oct 26;16(10):e0259134.PMID:34699564DOI:10.1371/journal.pone.0259134.

Epidermal growth factor (EGF) promotes cell growth, proliferation, and survival in numerous tissues. Piperonylic acid, a metabolite present in peppers (Piper nigrum L. and Piper longum L.), can bind to the epidermal growth factor receptor (EGFR) and induce an intracellular signaling cascade leading to the transcription of genes responsible for these actions, especially in keratinocytes. These cells are fundamental in maintaining cutaneous homeostasis and are the first to be damaged in the case of a wound. Thus, we hypothesized that Piperonylic acid improves wound healing. C57BL6/J male mice were submitted to dorsal skin wounds caused by a 6 mm punch and treated topically with Piperonylic acid or vehicle. The wounds were evaluated macro- and microscopically, and tissue samples were collected for immunofluorescence and real-time PCR analyses on days 6, 9 and 19 post-injury. Topical Piperonylic acid improved wound healing from day 6 post-injury until closure. This phenomenon apparently occurred through EGFR activation. In addition, Piperonylic acid modulated the gene expression of interleukin (Il)-6, il-1β, tumor necrosis factor (Tnf)-α, il-10, monocyte chemoattractant protein (Mcp)-1 and insulin-like growth factor (Igf)-1, which are important for the healing process. By day 19 post-injury, the new tissue showed greater deposition of type I collagen and a morphology closer to intact skin, with more dermal papillae and hair follicles. We conclude that Piperonylic acid may be a viable option for the treatment of skin wounds.

Piperonylic acid stimulates keratinocyte growth and survival by activating epidermal growth factor receptor (EGFR)

Sci Rep 2018 Jan 9;8(1):162.PMID:29317682DOI:10.1038/s41598-017-18361-3.

Epidermal growth factor (EGF) stimulates cell growth, proliferation, and survival. The biological benefits of EGF have been utilized in medical uses for improving wound healing as well as in today's skin cosmetics. EGF has been found in urine, saliva, milk, and plasma, but its efficient isolation remains a difficult task. With technical advances, recombinant protein purification technique has been used for EGF production. However, the recombinant EGF is still expensive and keeping it with stable activity is difficult to be used widely. Thus, a molecule that can mimic the EGF activity would be a useful alternative of EGF. Herein, we have discovered that a natural small molecule Piperonylic acid shows EGF-like activity in HaCaT keratinocytes. Piperonylic acid induced EGF receptor (EGFR) activation and resulted in serial activation of the downstream modulators. The activated signaling pathway eventually up-regulated gene expression of egr-1, c-fos, c-jun, and c-myc, which are involved in cell growth and survival. Moreover, Piperonylic acid showed promoting role in keratinocyte growth and survival from UVB-induced cellular damages. This study has revealed the EGF-like activity of Piperonylic acid and proposed that the Piperonylic acid could be a promising component for skin wound healing agents or cosmetic ingredient.

The phenylpropanoid pathway inhibitor Piperonylic acid induces broad-spectrum pest and disease resistance in plants

Plant Cell Environ 2021 Sep;44(9):3122-3139.PMID:34053100DOI:10.1111/pce.14119.

Although many phenylpropanoid pathway-derived molecules act as physical and chemical barriers to pests and pathogens, comparatively little is known about their role in regulating plant immunity. To explore this research field, we transiently perturbed the phenylpropanoid pathway through application of the CINNAMIC ACID-4-HYDROXYLASE (C4H) inhibitor Piperonylic acid (PA). Using bioassays involving diverse pests and pathogens, we show that transient C4H inhibition triggers systemic, broad-spectrum resistance in higher plants without affecting growth. PA treatment enhances tomato (Solanum lycopersicum) resistance in field and laboratory conditions, thereby illustrating the potential of phenylpropanoid pathway perturbation in crop protection. At the molecular level, transcriptome and metabolome analyses reveal that transient C4H inhibition in tomato reprograms phenylpropanoid and flavonoid metabolism, systemically induces immune signalling and pathogenesis-related genes, and locally affects reactive oxygen species metabolism. Furthermore, C4H inhibition primes cell wall modification and phenolic compound accumulation in response to root-knot nematode infection. Although PA treatment induces local accumulation of the phytohormone salicylic acid, the PA resistance phenotype is preserved in tomato plants expressing the salicylic acid-degrading NahG construct. Together, our results demonstrate that transient phenylpropanoid pathway perturbation is a conserved inducer of plant resistance and thus highlight the crucial regulatory role of this pathway in plant immunity.