Home>>PK150

PK150 Sale

目录号 : GC39300

PK150 is an analogue of Sorafenib, which shows oral bioavailability and antibacterial activity against several pathogenic strains at submicromolar concentrations. PK150 inhibits Gram-positive Methicillin-sensitive S. aureus (MSSA), Methicillin-resistant S. aureus (MRSA), Vancomycin intermediate S. aureus (VISA) with MICs of 0.3, 0.3-1, 0.3 ?M, respectively.

PK150 Chemical Structure

Cas No.:2165324-62-7

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,485.00
现货
5mg
¥1,350.00
现货
10mg
¥2,250.00
现货
50mg
¥6,750.00
现货
100mg
¥11,250.00
现货
200mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PK150 is an analogue of Sorafenib, which shows oral bioavailability and antibacterial activity against several pathogenic strains at submicromolar concentrations. PK150 inhibits Gram-positive Methicillin-sensitive S. aureus (MSSA), Methicillin-resistant S. aureus (MRSA), Vancomycin intermediate S. aureus (VISA) with MICs of 0.3, 0.3-1, 0.3 ?M, respectively.

[1] Le P, et al. Nat Chem. 2020 Feb;12(2):145-158.

Chemical Properties

Cas No. 2165324-62-7 SDF
Canonical SMILES O=C(NC1=CC=C(OC(F)(F)O2)C2=C1)NC3=CC=C(Cl)C(C(F)(F)F)=C3
分子式 C15H8ClF5N2O3 分子量 394.68
溶解度 DMSO: 250 mg/mL (633.42 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.5337 mL 12.6685 mL 25.337 mL
5 mM 0.5067 mL 2.5337 mL 5.0674 mL
10 mM 0.2534 mL 1.2668 mL 2.5337 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Comparative Target Analysis of Chlorinated Biphenyl Antimicrobials Highlights MenG as a Molecular Target of Triclocarban

Appl Environ Microbiol 2020 Aug 3;86(16):e00933-20.PMID:32503913DOI:10.1128/AEM.00933-20.

Triclocarban (TCC), a formerly used disinfectant, kills bacteria via an unknown mechanism of action. A structural hallmark is its N,N'-diaryl urea motif, which is also present in other antibiotics, including the recently reported small molecule PK150. We show here that, like PK150, TCC exhibits an inhibitory effect on Staphylococcus aureus menaquinone metabolism via inhibition of the biosynthesis protein demethylmenaquinone methyltransferase (MenG). However, the activity spectrum (MIC90) of TCC across a broad range of multidrug-resistant staphylococcus and enterococcus strains was much narrower than that of PK150. Accordingly, TCC did not cause an overactivation of signal peptidase SpsB, a hallmark of the PK150 mode of action. Furthermore, we were able to rule out inhibition of FabI, a confirmed target of the diaryl ether antibiotic triclosan (TCS). Differences in the target profiles of TCC and TCS were further investigated by proteomic analysis, showing complex but rather distinct changes in the protein expression profile of S. aureus Downregulation of the arginine deiminase pathway provided additional evidence for an effect on bacterial energy metabolism by TCC.IMPORTANCE TCC's widespread use as an antimicrobial agent has made it a ubiquitous environmental pollutant despite its withdrawal due to ecological and toxicological concerns. With its antibacterial mechanism of action still being unknown, we undertook a comparative target analysis between TCC, PK150 (a recently discovered antibacterial compound with structural resemblance to TCC), and TCS (another widely employed chlorinated biphenyl antimicrobial) in the bacterium Staphylococcus aureus We show that there are distinct differences in each compound's mode of action, but also identify a shared target between TCC and PK150, the interference with menaquinone metabolism by inhibition of MenG. The prevailing differences, however, which also manifest in a remarkably better broad-spectrum activity of PK150, suggest that even high levels of TCC or TCS resistance observed by continuous environmental exposure may not affect the potential of PK150 or related N,N'-diaryl urea compounds as new antibiotic drug candidates against multidrug-resistant infections.

Repurposing human kinase inhibitors to create an antibiotic active against drug-resistant Staphylococcus aureus, persisters and biofilms

Nat Chem 2020 Feb;12(2):145-158.PMID:31844194DOI:10.1038/s41557-019-0378-7.

New drugs are desperately needed to combat methicillin-resistant Staphylococcus aureus (MRSA) infections. Here, we report screening commercial kinase inhibitors for antibacterial activity and found the anticancer drug sorafenib as major hit that effectively kills MRSA strains. Varying the key structural features led to the identification of a potent analogue, PK150, that showed antibacterial activity against several pathogenic strains at submicromolar concentrations. Furthermore, this antibiotic eliminated challenging persisters as well as established biofilms. PK150 holds promising therapeutic potential as it did not induce in vitro resistance, and shows oral bioavailability and in vivo efficacy. Analysis of the mode of action using chemical proteomics revealed several targets, which included interference with menaquinone biosynthesis by inhibiting demethylmenaquinone methyltransferase and the stimulation of protein secretion by altering the activity of signal peptidase IB. Reduced endogenous menaquinone levels along with enhanced levels of extracellular proteins of PK150-treated bacteria support this target hypothesis. The associated antibiotic effects, especially the lack of resistance development, probably stem from the compound's polypharmacology.

Synthesis and biological evaluation of novel N, N'-diarylurea derivatives as potent antibacterial agents against MRSA

Bioorg Med Chem Lett 2022 Nov 1;75:128975.PMID:36067930DOI:10.1016/j.bmcl.2022.128975.

A series of new N, N'-diarylurea derivatives were designed and synthesized, some of which exhibited potent antibacterial activity against the drug-susceptible and drug-resistant Gram-positive strains. Especially, compounds 2c, 2g-2l showed broader antibacterial spectrum and more potent antibacterial activity (MIC = 0.30-2.72 μM) against MRSA and MRSE than the control levofloxacin (MIC = 0.69-22.14 μM). In addition, compounds 2c, 2g, 2h and 2l exhibited much better antibacterial activity (MIC = 1.29-2.86 μM) against VRE (E. faecium) than sorafenib (MIC = 275.37 μM), PK150 (MIC = 5.07-10.13 μM) and SC78 (MIC = 2.40-4.79 μM). More importantly, the low cytotoxicity of compounds on cell lines HeLa and HepG2 implied a relatively wide therapeutic window, which was of high importance for further study.

Thrombin stimulates the activities of multiple previously unidentified protein kinases in platelets

J Biol Chem 1989 Dec 5;264(34):20723-9.PMID:2555369doi

We have used a renaturation method to search for previously unidentified protein kinases in human platelets. The method involves subjecting lysates to denaturing gel electrophoresis, transferring the proteins to blotting membranes, and treating the blotted proteins with guanidine. The guanidine is then removed to allow the proteins to renature, and the blots are overlaid with [gamma-32P]ATP. We have identified 14 electrophoretically distinct, serine/threonine-specific protein kinases. Eleven of the kinases clearly differ in molecular weight from all previously described platelet serine/threonine kinases. Ten of these novel kinases (PK220, PK200, PK170, PK150, PK64, PK60, PK56, PK52, PK48, and PK40) were found to possess markedly increased in vitro activity when isolated from thrombin-stimulated platelets, presumably as a result of thrombin-stimulated covalent modification. Treatment of intact platelets with the calcium ionophore ionomycin and phorbol 12-myristate 13-acetate also increased the in vitro activity of these kinases. The agonist-stimulated kinases could be divided into three classes: 1) one kinase whose activity was increased by in vivo phorbol ester treatment but not by ionomycin (PK150); 2) two kinases whose activity was increased by ionomycin but not phorbol ester (PK48 and PK40); 3) seven kinases whose activity was markedly increased by combinations of phorbol ester and ionomycin, but not by either agent alone (PK220, PK200, PK170, PK64, PK60, PK56, and PK52). This third mode of regulation is what would be expected of enzymes that mediate the biological effects of inositide-mobilizing stimuli.