Home>>Signaling Pathways>> Metabolism>> PPAR>>Pparδ agonist

Pparδ agonist Sale

目录号 : GC31510

PPARδagonist是PPARδ的激动剂,来自专利US20180071304,化合物实例10。

Pparδ agonist Chemical Structure

Cas No.:942594-93-6

规格 价格 库存 购买数量
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PPARδ agonist is a PPARδ agonist extracted from patent US20180071304, compound example 10.

[1]. Sauerber et al. Phenoxy acetic acids and phenyl propionic acids as PPAR delta agonists. US20180071304.

Chemical Properties

Cas No. 942594-93-6 SDF
Canonical SMILES O=C(O)COC1=CC=C(OC/C=C(C2=CC=C(F)C=C2)\C3=CC=C(C#CCN4CCOCC4)C=C3)C=C1C
分子式 C31H30FNO5 分子量 515.57
溶解度 Soluble in DMSO 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.9396 mL 9.698 mL 19.396 mL
5 mM 0.3879 mL 1.9396 mL 3.8792 mL
10 mM 0.194 mL 0.9698 mL 1.9396 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications

The peroxisome proliferator-activated receptors (PPAR-α, PPAR-β/δ, and PPAR-γ) are members of the nuclear receptor super-family, acting as ligand-inducible transcription factors and play crucial roles in glucose and lipid metabolism. These are a well-known receptor for diabetic therapy, not only influence the cardiovascular systems but are also expressed in many human solid tumors. For atherosclerosis, inflammation, and hypertension, the PPARs are considered as important therapeutic targets. Furthermore, it has been suggested that careful designing of partial agonists for PPARs, may show improvement with the side effects and also increase the therapeutic value for different diseases as cancer, inflammation and cardiovascular etc. This review summaries structural features of PPAR receptors, illustrates the method of PPAR modulator design, then analyzes recent dual- and pan-agonist with different therapeutic outcomes of the receptor to be used as a target for drugs in future. The advances in PPARs antagonists, their classification and structure-activity relationship are also summarized.

The role of peroxisome proliferator-activated receptors (PPAR) in immune responses

Peroxisome proliferator-activated receptors (PPARs) are fatty acid-activated transcription factors of nuclear hormone receptor superfamily that regulate energy metabolism. Currently, three PPAR subtypes have been identified: PPARα, PPARγ, and PPARβ/δ. PPARα and PPARδ are highly expressed in oxidative tissues and regulate genes involved in substrate delivery and oxidative phosphorylation (OXPHOS) and regulation of energy homeostasis. In contrast, PPARγ is more important in lipogenesis and lipid synthesis, with highest expression levels in white adipose tissue (WAT). In addition to tissues regulating whole body energy homeostasis, PPARs are expressed in immune cells and have an emerging critical role in immune cell differentiation and fate commitment. In this review, we discuss the actions of PPARs in the function of the innate and the adaptive immune system and their implications in immune-mediated inflammatory conditions.

PPARs as Metabolic Regulators in the Liver: Lessons from Liver-Specific PPAR-Null Mice

Peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ modulate lipid homeostasis. PPARα regulates lipid metabolism in the liver, the organ that largely controls whole-body nutrient/energy homeostasis, and its abnormalities may lead to hepatic steatosis, steatohepatitis, steatofibrosis, and liver cancer. PPARβ/δ promotes fatty acid β-oxidation largely in extrahepatic organs, and PPARγ stores triacylglycerol in adipocytes. Investigations using liver-specific PPAR-disrupted mice have revealed major but distinct contributions of the three PPARs in the liver. This review summarizes the findings of liver-specific PPAR-null mice and discusses the role of PPARs in the liver.

Exploration and Development of PPAR Modulators in Health and Disease: An Update of Clinical Evidence

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that govern the expression of genes responsible for energy metabolism, cellular development, and differentiation. Their crucial biological roles dictate the significance of PPAR-targeting synthetic ligands in medical research and drug discovery. Clinical implications of PPAR agonists span across a wide range of health conditions, including metabolic diseases, chronic inflammatory diseases, infections, autoimmune diseases, neurological and psychiatric disorders, and malignancies. In this review we aim to consolidate existing clinical evidence of PPAR modulators, highlighting their clinical prospects and challenges. Findings from clinical trials revealed that different agonists of the same PPAR subtype could present different safety profiles and clinical outcomes in a disease-dependent manner. Pemafibrate, due to its high selectivity, is likely to replace other PPARα agonists for dyslipidemia and cardiovascular diseases. PPARγ agonist pioglitazone showed tremendous promises in many non-metabolic disorders like chronic kidney disease, depression, inflammation, and autoimmune diseases. The clinical niche of PPARβ/δ agonists is less well-explored. Interestingly, dual- or pan-PPAR agonists, namely chiglitazar, saroglitazar, elafibranor, and lanifibranor, are gaining momentum with their optimistic outcomes in many diseases including type 2 diabetes, dyslipidemia, non-alcoholic fatty liver disease, and primary biliary cholangitis. Notably, the preclinical and clinical development for PPAR antagonists remains unacceptably deficient. We anticipate the future design of better PPAR modulators with minimal off-target effects, high selectivity, superior bioavailability, and pharmacokinetics. This will open new possibilities for PPAR ligands in medicine.

PPAR-Mediated Toxicology and Applied Pharmacology

Peroxisome proliferator-activated receptors (PPARs), members of the nuclear hormone receptor family, attract wide attention as promising therapeutic targets for the treatment of multiple diseases, and their target selective ligands were also intensively developed for pharmacological agents such as the approved drugs fibrates and thiazolidinediones (TZDs). Despite their potent pharmacological activities, PPARs are reported to be involved in agent- and pollutant-induced multiple organ toxicity or protective effects against toxicity. A better understanding of the protective and the detrimental role of PPARs will help to preserve efficacy of the PPAR modulators but diminish adverse effects. The present review summarizes and critiques current findings related to PPAR-mediated types of toxicity and protective effects against toxicity for a systematic understanding of PPARs in toxicology and applied pharmacology.