Home>>Signaling Pathways>> DNA Damage/DNA Repair>> DNA Alkylator/Crosslinker>>PR-104

PR-104 Sale

目录号 : GC63154

PR-104 是一种选择性缺氧激活的 DNA 交联剂,可用于多种异种肿瘤模型的研究。PR-104 作为氮芥的前体药物,可有效地转化为亲脂性较强的二硝基苯甲酰胺芥菜醇 PR-104A。

PR-104 Chemical Structure

Cas No.:851627-62-8

规格 价格 库存 购买数量
5 mg
¥4,320.00
现货
10 mg
¥7,200.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PR-104 is a selective hypoxia-activated DNA cross-linking agent and can be used for the research of multiple tumor xenograft models. PR-104, as a nitrogen mustard pre-prodrug, is converted efficiently to the more lipophilic dinitrobenzamide mustards alcohol PR-104A[1].

PR-104 (80 μM; 1 hour; SiHa cells) shows greater suppression of radiation-induced DNA single-strand breaks under hypoxic than aerobic conditions. PR-104 (100 μM; 1 hour; SiHa cells) results in phosphorylation of Ser139 of histone H2AX (gH2AX). PR-104 (0.266 mmol/kg; 18 h; SiHa cells) shows activity against hypoxic cells after irradiation. PR-104 varies in potency between cell lines, with the lowest IC50 (0.51 μmol/L) in H460 cells and highest (7.3 μmol/L) in PC3 prostate cells[1].

PR-104 (0.56 mmol/kg; i.v. or i.p.; 0~2 hours) makes the plasma area under the curve. PR-104 (0.23 mmol/kg; i.p.; 100 days) shows antitumor activity[1].

[1]. Patterson AV, et al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin Cancer Res. 2007;13(13):3922-3932.

Chemical Properties

Cas No. 851627-62-8 SDF
分子式 C14H20BrN4O12PS 分子量 579.27
溶解度 储存条件 4°C, away from moisture and light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.7263 mL 8.6316 mL 17.2631 mL
5 mM 0.3453 mL 1.7263 mL 3.4526 mL
10 mM 0.1726 mL 0.8632 mL 1.7263 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Bioreductive prodrug PR-104 improves the tumour distribution and titre of the nitroreductase-armed oncolytic adenovirus ONYX-411NTR leading to therapeutic benefit

Cancer Gene Ther 2022 Jul;29(7):1021-1032.PMID:34837065DOI:10.1038/s41417-021-00409-2.

Advances in the field of cancer immunotherapy have stimulated renewed interest in adenoviruses as oncolytic agents. Clinical experience has shown that oncolytic adenoviruses are safe and well tolerated but possess modest single-agent activity. One approach to improve the potency of oncolytic viruses is to utilise their tumour selectivity to deliver genes encoding prodrug-activating enzymes. These enzymes can convert prodrugs into cytotoxic species within the tumour; however, these cytotoxins can interfere with viral replication and limit utility. In this work, we evaluated the activity of a nitroreductase (NTR)-armed oncolytic adenovirus ONYX-411NTR in combination with the clinically tested bioreductive prodrug PR-104. Both NTR-expressing cells in vitro and xenografts containing a minor population of NTR-expressing cells were highly sensitive to PR-104. Pharmacologically relevant prodrug exposures did not interfere with ONYX-411NTR replication in vitro. In vivo, prodrug administration increased virus titre and improved virus distribution within tumour xenografts. Colonisation of tumours with high ONYX-411NTR titre resulted in NTR expression and prodrug activation. The combination of ONYX-411NTR with PR-104 was efficacious against HCT116 xenografts, whilst neither prodrug nor virus were active as single agents. This work highlights the potential for future clinical development of NTR-armed oncolytic viruses in combination with bioreductive prodrugs.

PR-104 plus sorafenib in patients with advanced hepatocellular carcinoma

Cancer Chemother Pharmacol 2011 Aug;68(2):539-45.PMID:21594722DOI:10.1007/s00280-011-1671-3.

Purpose: PR-104 is activated by reductases under hypoxia or by aldo-keto reductase 1C3 (AKR1C3) to form cytotoxic nitrogen mustards. Hepatocellular carcinoma (HCC) displays extensive hypoxia and expresses AKR1C3. This study evaluated the safety and efficacy of PR-104 plus sorafenib in HCC. Methods: Patients with advanced-stage HCC, Child-Pugh A cirrhosis, and adequate organ function, were assigned to dose escalating cohorts of monthly PR-104 in combination with twice daily sorafenib. The plasma pharmacokinetics (PK) of PR-104 and its metabolites were evaluated. Results: Fourteen (11 men, 3 women) HCC patients: median age 60 years, ECOG 0-1, received PR-104 at two dose levels plus sorafenib. Six patients were treated at starting cohort of 770 mg/m(2). In view of one DLT of febrile neutropenia and prolonged thrombocytopenia, a lower PR-104 dose cohort (550 mg/m(2)) was added and accrued 8 patients. One patient had a partial response and three had stable disease of ≥8 weeks in the 770 mg/m(2) cohort. Three patients at the 550 mg/m(2) had stable disease. There were no differences in PK of PR-104 or its metabolites with or without sorafenib, but the PR-104A AUC was twofold higher (P < 0.003) than in previous phase I studies at equivalent dose. Conclusions: PR-104 plus sorafenib was poorly tolerated in patients with advanced HCC, possibly because of compromised clearance of PR-104A in this patient population. Thrombocytopenia mainly and neutropenia were the most clinically significant toxicities and led to discontinuation of the study. PR-104 plus sorafenib is unlikely to be suitable for development in this setting.

Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma

Cancer Biol Ther 2015;16(4):610-22.PMID:25869917DOI:10.1080/15384047.2015.1017171.

PR-104 is a clinical stage bioreductive prodrug that is converted in vivo to its cognate alcohol, PR-104A. This dinitrobenzamide mustard is reduced to activated DNA cross-linking metabolites (hydroxylamine PR-104H and amine PR-104M) under hypoxia by one-electron reductases and independently of hypoxia by the 2-electron reductase aldo-keto reductase 1C3 (AKR1C3). High expression of AKR1C3, along with extensive hypoxia, suggested the potential of PR-104 for treatment of hepatocellular carcinoma (HCC). However, a phase IB trial with sorafenib demonstrated significant toxicity that was ascribed in part to reduced PR-104A clearance, likely reflecting compromised glucuronidation in patients with advanced HCC. Here, we evaluate the activity of PR-104 in HCC xenografts (HepG2, PLC/PRF/5, SNU-398, Hep3B) in mice, which do not significantly glucuronidate PR-104A. Cell line differences in sensitivity to PR-104A in vitro under aerobic conditions could be accounted for by differences in both expression of AKR1C3 (high in HepG2 and PLC/PRF/5) and sensitivity to the major active metabolite PR-104H, to which PLC/PRF/5 was relatively resistant, while hypoxic selectivity of PR-104A cytotoxicity and reductive metabolism was greatest in the low-AKR1C3 SNU-398 and Hep3B lines. Expression of AKR1C3 in HepG2 and PLC/PRF/5 xenografts was in the range seen in 21 human HCC specimens. PR-104 monotherapy elicited significant reductions in growth of Hep3B and HepG2 xenografts, and the combination with sorafenib was significantly active in all 4 xenograft models. The results suggest that better-tolerated analogs of PR-104, without a glucuronidation liability, may have the potential to exploit AKR1C3 and/or hypoxia in HCC in humans.

PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours

BMC Cancer 2012 Oct 25;12:496.PMID:23098625DOI:10.1186/1471-2407-12-496.

Background: The purpose of this phase Ib clinical trial was to determine the maximum tolerated dose (MTD) of PR-104 a bioreductive pre-prodrug given in combination with gemcitabine or docetaxel in patients with advanced solid tumours. Methods: PR-104 was administered as a one-hour intravenous infusion combined with docetaxel 60 to 75 mg/m2 on day one given with or without granulocyte colony stimulating factor (G-CSF) on day two or administrated with gemcitabine 800 mg/m2 on days one and eight, of a 21-day treatment cycle. Patients were assigned to one of ten PR-104 dose-levels ranging from 140 to 1100 mg/m2 and to one of four combination groups. Pharmacokinetic studies were scheduled for cycle one day one and 18F fluoromisonidazole (FMISO) positron emission tomography hypoxia imaging at baseline and after two treatment cycles. Results: Forty two patients (23 females and 19 males) were enrolled with ages ranging from 27 to 85 years and a wide range of advanced solid tumours. The MTD of PR-104 was 140 mg/m2 when combined with gemcitabine, 200 mg/m2 when combined with docetaxel 60 mg/m2, 770 mg/m2 when combined with docetaxel 60 mg/m2 plus G-CSF and ≥770 mg/m2 when combined with docetaxel 75 mg/m2 plus G-CSF. Dose-limiting toxicity (DLT) across all four combination settings included thrombocytopenia, neutropenic fever and fatigue. Other common grade three or four toxicities included neutropenia, anaemia and leukopenia. Four patients had partial tumour response. Eleven of 17 patients undergoing FMISO scans showed tumour hypoxia at baseline. Plasma pharmacokinetics of PR-104, its metabolites (alcohol PR-104A, glucuronide PR-104G, hydroxylamine PR-104H, amine PR-104M and semi-mustard PR-104S1), docetaxel and gemcitabine were similar to that of their single agents. Conclusions: Combination of PR-104 with docetaxel or gemcitabine caused dose-limiting and severe myelotoxicity, but prophylactic G-CSF allowed PR-104 dose escalation with docetaxel. Dose-limiting thrombocytopenia prohibited further evaluation of the PR104-gemcitabine combination. A recommended dose was identified for phase II trials of PR-104 of 770 mg/m2 combined with docetaxel 60 to 75 mg/m2 both given on day one of a 21-day treatment cycle supported by prophylactic G-CSF (NCT00459836).

Restoring Tumour Selectivity of the Bioreductive Prodrug PR-104 by Developing an Analogue Resistant to Aerobic Metabolism by Human Aldo-Keto Reductase 1C3

Pharmaceuticals (Basel) 2021 Nov 26;14(12):1231.PMID:34959631DOI:10.3390/ph14121231.

PR-104 is a phosphate ester pre-prodrug that is converted in vivo to its cognate alcohol, PR-104A, a latent alkylator which forms potent cytotoxins upon bioreduction. Hypoxia selectivity results from one-electron nitro reduction of PR-104A, in which cytochrome P450 oxidoreductase (POR) plays an important role. However, PR-104A also undergoes 'off-target' two-electron reduction by human aldo-keto reductase 1C3 (AKR1C3), resulting in activation in oxygenated tissues. AKR1C3 expression in human myeloid progenitor cells probably accounts for the dose-limiting myelotoxicity of PR-104 documented in clinical trials, resulting in human PR-104A plasma exposure levels 3.4- to 9.6-fold lower than can be achieved in murine models. Structure-based design to eliminate AKR1C3 activation thus represents a strategy for restoring the therapeutic window of this class of agent in humans. Here, we identified SN29176, a PR-104A analogue resistant to human AKR1C3 activation. SN29176 retains hypoxia selectivity in vitro with aerobic/hypoxic IC50 ratios of 9 to 145, remains a substrate for POR and triggers γH2AX induction and cell cycle arrest in a comparable manner to PR-104A. SN35141, the soluble phosphate pre-prodrug of SN29176, exhibited superior hypoxic tumour log cell kill (>4.0) to PR-104 (2.5-3.7) in vivo at doses predicted to be achievable in humans. Orthologues of human AKR1C3 from mouse, rat and dog were incapable of reducing PR-104A, thus identifying an underlying cause for the discrepancy in PR-104 tolerance in pre-clinical models versus humans. In contrast, the macaque AKR1C3 gene orthologue was able to metabolise PR-104A, indicating that this species may be suitable for evaluating the toxicokinetics of PR-104 analogues for clinical development. We confirmed that SN29176 was not a substrate for AKR1C3 orthologues across all four pre-clinical species, demonstrating that this prodrug analogue class is suitable for further development. Based on these findings, a prodrug candidate was subsequently identified for clinical trials.