Home>>PRI-724

PRI-724 Sale

目录号 : GC61205

PRI-724 (C-82 prodrug, ICG-001 analog) is a potent and specific inhibitor that disrupts the interaction of β-catenin and CBP.

PRI-724 Chemical Structure

Cas No.:1422253-38-0

规格 价格 库存 购买数量
5mg
¥1,080.00
现货
10mg
¥1,710.00
现货
25mg
¥3,060.00
现货
50mg
¥4,860.00
现货
100mg
¥7,200.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

PRI-724 (C-82 prodrug, ICG-001 analog) is a potent and specific inhibitor that disrupts the interaction of β-catenin and CBP.

PRI-724 reduces liver fibrosis,and hepatic hydroxyproline levels, in HCV mice while attenuating αSMA induction. PRI-724 leads to increased levels of matrix metalloproteinase (MMP)-8 mRNA in the liver, along with elevated levels of intrahepatic neutrophils and macrophages/monocytes. In conclusion, PRI-724 ameliorates HCV-induced liver fibrosis in mice. PRI-724 is a drug candidate which possesses antifibrotic effect.[1]

[1] Yuko Tokunaga, et al. Sci Rep. 2017 Mar 23;7(1):325.

Chemical Properties

Cas No. 1422253-38-0 SDF
Canonical SMILES O=C(N([C@]([C@H](C)N1CC2=C3N=CC=CC3=CC=C2)([H])N4[C@@H](CC5=CC=C(OP(O)(O)=O)C=C5)C1=O)N(C)CC4=O)NCC6=CC=CC=C6
分子式 C33H35N6O7P 分子量 658.64
溶解度 储存条件 4°C, protect from light
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.5183 mL 7.5914 mL 15.1828 mL
5 mM 0.3037 mL 1.5183 mL 3.0366 mL
10 mM 0.1518 mL 0.7591 mL 1.5183 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity (Review)

Int J Oncol 2017 Nov;51(5):1357-1369.PMID:29048660DOI:10.3892/ijo.2017.4129.

Cancer stem cells (CSCs), which have the potential for self-renewal, differentiation and de-differentiation, undergo epigenetic, epithelial-mesenchymal, immunological and metabolic reprogramming to adapt to the tumor microenvironment and survive host defense or therapeutic insults. Intra-tumor heterogeneity and cancer-cell plasticity give rise to therapeutic resistance and recurrence through clonal replacement and reactivation of dormant CSCs, respectively. WNT signaling cascades cross-talk with the FGF, Notch, Hedgehog and TGFβ/BMP signaling cascades and regulate expression of functional CSC markers, such as CD44, CD133 (PROM1), EPCAM and LGR5 (GPR49). Aberrant canonical and non-canonical WNT signaling in human malignancies, including breast, colorectal, gastric, lung, ovary, pancreatic, prostate and uterine cancers, leukemia and melanoma, are involved in CSC survival, bulk-tumor expansion and invasion/metastasis. WNT signaling-targeted therapeutics, such as anti-FZD1/2/5/7/8 monoclonal antibody (mAb) (vantictumab), anti-LGR5 antibody-drug conjugate (ADC) (mAb-mc-vc-PAB-MMAE), anti-PTK7 ADC (PF-06647020), anti-ROR1 mAb (cirmtuzumab), anti-RSPO3 mAb (rosmantuzumab), small-molecule porcupine inhibitors (ETC-159, WNT-C59 and WNT974), tankyrase inhibitors (AZ1366, G007-LK, NVP-TNKS656 and XAV939) and β-catenin inhibitors (BC2059, CWP232228, ICG-001 and PRI-724), are in clinical trials or preclinical studies for the treatment of patients with WNT-driven cancers. WNT signaling-targeted therapeutics are applicable for combination therapy with BCR-ABL, EGFR, FLT3, KIT or RET inhibitors to treat a subset of tyrosine kinase-driven cancers because WNT and tyrosine kinase signaling cascades converge to β-catenin for the maintenance and expansion of CSCs. WNT signaling-targeted therapeutics might also be applicable for combination therapy with immune checkpoint blockers, such as atezolizumab, avelumab, durvalumab, ipilimumab, nivolumab and pembrolizumab, to treat cancers with immune evasion, although the context-dependent effects of WNT signaling on immunity should be carefully assessed. Omics monitoring, such as genome sequencing and transcriptome tests, immunohistochemical analyses on PD-L1 (CD274), PD-1 (PDCD1), ROR1 and nuclear β-catenin and organoid-based drug screening, is necessary to determine the appropriate WNT signaling-targeted therapeutics for cancer patients.

The novel inhibitor PRI-724 for Wnt/β-catenin/CBP signaling ameliorates bleomycin-induced pulmonary fibrosis in mice

Exp Lung Res 2019 Sep;45(7):188-199.PMID:31298961DOI:10.1080/01902148.2019.1638466.

Purpose/Aim of the Study: Wnt/β-catenin signaling was reported to be activated in pulmonary fibrosis, and was focused on as a target for antifibrotic therapy. However, the mechanism how the inhibition of Wnt/β-catenin signaling ameliorate pulmonary fibrosis has not been fully elucidated. The purpose of this study is to explore the target cells of Wnt/β-catenin inhibition in pulmonary fibrosis and to examine the antifibrotic effect of the novel inhibitor PRI-724 specifically disrupting the interaction of β-catenin and CBP. Materials and Methods: The effect of C-82, an active metabolite of PRI-724, on the expression of TGF-β1 and α-smooth muscle actin (SMA) was examined on fibroblasts and macrophages. We also examined the effects of PRI-724 in mouse model of bleomycin-induced pulmonary fibrosis. Results: The activation and increased accumulation of β-catenin in the canonical pathway were detected in lung fibroblasts as well as macrophages stimulated by Wnt3a using Western blotting. Treatment with C-82 reduced CBP protein and increased p300 protein binding to β-catenin in the nucleus of lung fibroblasts. In addition, C-82 inhibited the expression of SMA in lung fibroblasts treated with TGF-β, indicating the inhibition of myofibroblast differentiation. In the fibrotic lungs induced by bleomycin, β-catenin was stained strongly in macrophages, but the staining of β-catenin in alveolar epithelial cells and fibroblasts was weak. The administration of PRI-724 ameliorated pulmonary fibrosis induced by bleomycin in mice when administered with a late, but not an early, treatment schedule. Analysis of bronchoalveolar fluid (BALF) showed a decreased number of alveolar macrophages. In addition, the level of TGF-β1 in BALF was decreased in mice treated with PRI-724. C-82 also inhibited the production of TGF-β1 by alveolar macrophages. Conclusions: These results suggest that the β-catenin/CBP inhibitor PRI-724 is a potent antifibrotic agent that acts by modulating the activity of macrophages in the lungs.

Molecular genetics and targeted therapy of WNT-related human diseases (Review)

Int J Mol Med 2017 Sep;40(3):587-606.PMID:28731148DOI:10.3892/ijmm.2017.3071.

Canonical WNT signaling through Frizzled and LRP5/6 receptors is transduced to the WNT/β-catenin and WNT/stabilization of proteins (STOP) signaling cascades to regulate cell fate and proliferation, whereas non-canonical WNT signaling through Frizzled or ROR receptors is transduced to the WNT/planar cell polarity (PCP), WNT/G protein-coupled receptor (GPCR) and WNT/receptor tyrosine kinase (RTK) signaling cascades to regulate cytoskeletal dynamics and directional cell movement. WNT/β-catenin signaling cascade crosstalks with RTK/SRK and GPCR-cAMP-PKA signaling cascades to regulate β-catenin phosphorylation and β-catenin-dependent transcription. Germline mutations in WNT signaling molecules cause hereditary colorectal cancer, bone diseases, exudative vitreoretinopathy, intellectual disability syndrome and PCP-related diseases. APC or CTNNB1 mutations in colorectal, endometrial and prostate cancers activate the WNT/β-catenin signaling cascade. RNF43, ZNRF3, RSPO2 or RSPO3 alterations in breast, colorectal, gastric, pancreatic and other cancers activate the WNT/β-catenin, WNT/STOP and other WNT signaling cascades. ROR1 upregulation in B-cell leukemia and solid tumors and ROR2 upregulation in melanoma induce invasion, metastasis and therapeutic resistance through Rho-ROCK, Rac-JNK, PI3K-AKT and YAP signaling activation. WNT signaling in cancer, stromal and immune cells dynamically orchestrate immune evasion and antitumor immunity in a cell context-dependent manner. Porcupine (PORCN), RSPO3, WNT2B, FZD5, FZD10, ROR1, tankyrase and β-catenin are targets of anti-WNT signaling therapy, and ETC-159, LGK974, OMP-18R5 (vantictumab), OMP-54F28 (ipafricept), OMP-131R10 (rosmantuzumab), PRI-724 and UC-961 (cirmtuzumab) are in clinical trials for cancer patients. Different classes of anti-WNT signaling therapeutics are necessary for the treatment of APC/CTNNB1-, RNF43/ZNRF3/RSPO2/RSPO3- and ROR1-types of human cancers. By contrast, Dickkopf-related protein 1 (DKK1), SOST and glycogen synthase kinase 3β (GSK3β) are targets of pro-WNT signaling therapy, and anti-DKK1 (BHQ880 and DKN-01) and anti-SOST (blosozumab, BPS804 and romosozumab) monoclonal antibodies are being tested in clinical trials for cancer patients and osteoporotic post-menopausal women. WNT-targeting therapeutics have also been applied as reagents for in vitro stem-cell processing in the field of regenerative medicine.

Safety, tolerability, and anti-fibrotic efficacy of the CBP/β-catenin inhibitor PRI-724 in patients with hepatitis C and B virus-induced liver cirrhosis: An investigator-initiated, open-label, non-randomised, multicentre, phase 1/2a study

EBioMedicine 2022 Jun;80:104069.PMID:35605429DOI:10.1016/j.ebiom.2022.104069.

Background: We conducted an exploratory study to assess the safety tolerability, and anti-fibrotic effects of PRI-724, a CBP/β-catenin inhibitor, in patients with hepatitis C virus (HCV)- and hepatitis B virus (HBV)-induced cirrhosis. Methods: This multicentre, open-label, non-randomised, non-placebo-controlled phase 1/2a trial was conducted at three hospitals in Japan. Between July 27, 2018, and July 13, 2021, we enrolled patients with HCV- and HBV-induced cirrhosis classified as Child-Pugh (CP) class A or B. In phase 1, 15 patients received intravenous infusions of PRI-724 at escalating doses of 140, 280, and 380 mg/m2/4 h twice weekly for 12 weeks. In phase 2a, 12 patients received the recommended PRI-724 dose. The primary endpoints of phases 1 and 2a were the frequency and severity of adverse events and efficacy in treating cirrhosis based on liver biopsy. This study was registered at ClinicalTrials.gov (no. NCT03620474). Findings: Three patients from phase 1 who received the recommended PRI-724 dose were evaluated to obtain efficacy and safety data in phase 2a. Serious adverse events occurred in three patients, one of which was possibly related to PRI-724. The most common adverse events were diarrhoea and nausea. PRI-724 did not decrease hepatic fibrosis with any statistical significance, either by ordinal scoring or measurement of collagen proportionate area at 12 weeks; however, we observed statistically significant improvements in liver stiffness, Model for End-stage Liver Disease score, and serum albumin level. Interpretation: Intravenous administration of 280 mg/m2/4 h PRI-724 over 12 weeks was preliminarily assessed to be well tolerated; however, further evaluation of anti-fibrotic effects in patients with cirrhosis is warranted. Funding: AMED, Ohara Pharmaceutical.

Inhibiting Wnt/beta-catenin in CTNNB1-mutated endometrial cancer

Mol Carcinog 2021 Aug;60(8):511-523.PMID:34038589DOI:10.1002/mc.23308.

The role of β-catenin/TCF transcriptional activity in endometrial cancer (EC) recurrence is not well understood. We assessed the impact of Wnt/β-catenin inhibition in EC models. In an analysis of the Cancer Genome Atlas, we confirmed that CTNNB1 mutations are enriched in recurrent low-risk EC and showed that aberrant Wnt/β-catenin pathway activation is associated with recurrence. We studied CTNNB1-wildtype (HEC1B, Ishikawa) and CTNNB1-mutant (HEC108, HEC265, HEC1B-S33Y, Ishikawa-S33Y) EC cell lines. Dose response curves were determined for 5 Wnt/β-catenin pathway inhibitors (Wnt-C59, XAV-939, PyrPam, PRI-724, SM04690). XAV939, Wnt-C59 and PyrPam inhibited function upstream of β-catenin transcriptional activity and were ineffective at inhibiting cell viability. In contrast, PRI724 and SM04690 indirectly inhibited β-catenin transcriptional activity and significantly reduced cell viability in CTNNB1-mutant cell lines. Treatment with SM04690 reduced cell viability (Licor Cell stain) in all EC cell lines, but viability was significantly lower in CTNNB1-mutant cell lines (p < 0.01). Mechanistically, SM04690 significantly inhibited proliferation measured via 5'-bromo-2'-deoxyuridine incorporation and reduced T cell factor (TCF) transcriptional activity. HEC1B, HEC1B-S33Y and HEC265 tumor-bearing mice were treated with vehicle or SM04690. Tumors treated with SM04690 had smaller mean volumes than those treated with vehicle (p < 0.001, p = 0.014, p = 0.06). In HEC1B-S33Y and HEC265 tumors, SM04690 treatment significantly reduced Ki67 H-scores compared to vehicle (p = 0.035, p = 0.024). Targeting the Wnt/β-catenin pathway in CTNNB1-mutant EC effectively inhibited proliferation and β-catenin/TCF transcriptional activity and blunted tumor progression in in vivo models. These studies suggest β-catenin transcriptional inhibitors are effective in EC and particularly in CTNNB1-mutant EC, highlighting a potential therapeutic vulnerability for treatment of CTNNB1-mutant EC.