Pyr10
目录号 : GC30096Pyr10是一种新型TRPC3选择性抑制剂,作用于转染YFP-TRPC3的HEK293细胞,抑制ROCE,IC50为0.72uM。
Cas No.:1315323-00-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Pyr10is a novel TRPC3-selective inhibitor, IC50 of Ca2+ influx inhibition by Pyr10 in carbachol-stimulated YFP-TRPC3-transfected HEK293 cells for ROCE and thapsigargin-depleted native RBL-2H3 cells for SOCE is 0.72 uM and 13.08 uM.IC50 value: 0.72 uM (TRPC3-ROCE), 13.08 uM (SOCE) [1]Target: TRPC3in vitro: Pyr10 displays substantial selectivity for TRPC3-mediated responses (18-fold) and the selective block of TRPC3 channels by Pyr10 barely affected mast cell activation.[1]
[1]. Schleifer H, et al. Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways. Br J Pharmacol. 2012 Dec;167(8):1712-1722. [2]. Obermayer D, et al. Microwave-assisted and continuous flow multistep synthesis of 4-(pyrazol-1-yl)carboxanilides. J Org Chem. 2011 Aug 19;76(16):6657-6669.
Cas No. | 1315323-00-2 | SDF | |
Canonical SMILES | O=S(C1=CC=C(C)C=C1)(NC2=CC=C(N3N=C(C(F)(F)F)C=C3C(F)(F)F)C=C2)=O | ||
分子式 | C18H13F6N3O2S | 分子量 | 449.37 |
溶解度 | DMSO : 100 mg/mL (222.53 mM);Water : < 0.1 mg/mL (insoluble) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.2253 mL | 11.1267 mL | 22.2534 mL |
5 mM | 0.4451 mL | 2.2253 mL | 4.4507 mL |
10 mM | 0.2225 mL | 1.1127 mL | 2.2253 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Pharmacological characterization of the calcium influx pathways involved in nitric oxide production by endothelial cells
Einstein (Sao Paulo) 2019 Jun 3;17(3):eAO4600.31166411 PMC6550436
Objective: To characterize the calcium influx pathways implicated in the sustained elevation of endothelial intracellular calcium concentration, required for the synthesis and release of relaxing factors. Methods: We evaluated the effect of the newly synthesized pyrazole derivatives, described as selective inhibitors for ORAI (BTP2/Pyr2 and Pyr6) and TRPC3 (Pyr3 and Pyr10) channels, upon endothelium- and extracellular calcium-dependent relaxations stimulated by acetylcholine and thapsigargin, in pre-constricted rat thoracic aortic rings. Results: Acetylcholine and thapsigargin responses were completely reverted by Pyr2 and Pyr6 (1 to 3μM). Pyr3 (0.3 to 3μM) caused a rapid reversal of acetylcholine (6.2±0.08mg.s-1) and thapsigargin (3.9±0.25mg.s-1) relaxations, whereas the more selective TRPC3 blocker Pyr10 (1 to 3μM) had no effect. The recently described TRPC4/5 selective blocker, ML204 (1 to 3μM), reverted completely acetylcholine relaxations, but minimally thapsigargin induced ones. Noteworthy, relaxations elicited by GSK1016790A (TRPV4 agonist) were unaffected by pyrazole compounds or ML204. After Pyr2 and Pyr6 pre-incubation, acetylcholine and thapsigargin evoked transient relaxations similar in magnitude and kinetics to those observed in the absence of extracellular calcium. Sodium nitroprusside relaxations as well as phenylephrine-induced contractions (denuded aorta) were not affected by any of pyrazole compounds (1 to 3μM). Conclusion: These observations revealed a previously unrecognized complexity in rat aorta endothelial calcium influx pathways, which result in production and release of nitric oxide. Pharmacologically distinguishable pathways mediate acetylcholine (ORAI/TRPC other than TRPC3/TRPC4 calcium-permeable channels) and thapsigargin (TRPC4 not required) induced calcium influx.
Increased transient receptor potential canonical 3 activity is involved in the pathogenesis of detrusor overactivity by dynamic interaction with Na+/Ca2+ exchanger 1
Lab Invest 2022 Jan;102(1):48-56.36775573 10.1038/s41374-021-00665-8
Transient receptor potential canonical 3 (TRPC3) is a nonselective cation channel, and its dysfunction is the basis of many clinical diseases. However, little is known about its possible role in the bladder. The purpose of this study was to explore the function and mechanism of TRPC3 in partial bladder outlet obstruction (PBOO)-induced detrusor overactivity (DO). We studied 31 adult female rats with DO induced by PBOO (the DO group) and 40 sham-operated rats (the control group). Here we report that the expression of TRPC3 in the bladder of DO rats increased significantly. Furthermore, Pyr10, which can selectively inhibit the TRPC3 channel, significantly reduced bladder excitability in DO and control rats, but the decrease of the bladder excitability of DO rats was more obvious. Pyr10 significantly reduced the intracellular calcium concentration in smooth muscle cells (SMCs) in DO and control rats. Finally, Na+/Ca2+ exchanger 1 (NCX1) colocalizes with TRPC3 and affects its expression and function. Collectively, these results indicate that TRPC3 plays an important role in the pathogenesis of DO through a synergistic effect with NCX1. TRPC3 and NCX1 may be new therapeutic targets for DO.
Increased transient receptor potential canonical 3 activity is involved in the pathogenesis of detrusor overactivity by dynamic interaction with Na+/Ca2+ exchanger 1
Lab Invest 2022 Jan;102(1):48-56.34497367 10.1038/s41374-021-00665-8
Transient receptor potential canonical 3 (TRPC3) is a nonselective cation channel, and its dysfunction is the basis of many clinical diseases. However, little is known about its possible role in the bladder. The purpose of this study was to explore the function and mechanism of TRPC3 in partial bladder outlet obstruction (PBOO)-induced detrusor overactivity (DO). We studied 31 adult female rats with DO induced by PBOO (the DO group) and 40 sham-operated rats (the control group). Here we report that the expression of TRPC3 in the bladder of DO rats increased significantly. Furthermore, Pyr10, which can selectively inhibit the TRPC3 channel, significantly reduced bladder excitability in DO and control rats, but the decrease of the bladder excitability of DO rats was more obvious. Pyr10 significantly reduced the intracellular calcium concentration in smooth muscle cells (SMCs) in DO and control rats. Finally, Na+/Ca2+ exchanger 1 (NCX1) colocalizes with TRPC3 and affects its expression and function. Collectively, these results indicate that TRPC3 plays an important role in the pathogenesis of DO through a synergistic effect with NCX1. TRPC3 and NCX1 may be new therapeutic targets for DO.
Comparative genomic analysis of pyrene-degrading Mycobacterium species: Genomic islands and ring-hydroxylating dioxygenases involved in pyrene degradation
J Microbiol 2018 Nov;56(11):798-804.30353465 10.1007/s12275-018-8372-0
The genome sequences of two pyrene-degrading bacterial strains of Mycobacterium spp. Pyr10 and PYR15, isolated from the estuarine wetland of the Han river, South Korea, were determined using the PacBio RS II sequencing platform. The complete genome of strain PYR15 was 6,037,017 bp in length with a GC content of 66.5%, and contained 5,933 protein-coding genes. The genome of strain Pyr10 was 5,999,427 bp in length with a GC content of 67.7%, and contained 5,767 protein-coding genes. Based on the average nucleotide identity values, these strains were designated as M. gilvum Pyr10 and M. pallens PYR15. A genomic comparison of these pyrene-degrading Mycobacterium strains with pyrene-non-degrading strains revealed that the genomes of pyrene-degrading strains possessed similar repertoires of ringhydroxylating dioxygenases (RHDs), including the pyrenehydroxylating dioxygenases encoded by nidA and nidA3, which could be readily distinguished from those of pyrenenon-degraders. Furthermore, genomic islands, containing catabolic gene clusters, were shared only among the pyrenedegrading Mycobacterium strains and these gene clusters contained RHD genes, including nidAB and nidA3B3. Our genome data should facilitate further studies on the evolution of the polycyclic aromatic hydrocarbon-degradation pathways in the genus Mycobacterium.
Novel pyrazole compounds for pharmacological discrimination between receptor-operated and store-operated Ca(2+) entry pathways
Br J Pharmacol 2012 Dec;167(8):1712-22.22862290 PMC3525873
Background and purpose: Pyrazole derivatives have recently been suggested as selective blockers of transient receptor potential cation (TRPC) channels but their ability to distinguish between the TRPC and Orai pore complexes is ill-defined. This study was designed to characterize a series of pyrazole derivatives in terms of TRPC/Orai selectivity and to delineate consequences of selective suppression of these pathways for mast cell activation. Experimental approach: Pyrazoles were generated by microwave-assisted synthesis and tested for effects on Ca(2+) entry by Fura-2 imaging and membrane currents by patch-clamp recording. Experiments were performed in HEK293 cells overexpressing TRPC3 and in RBL-2H3 mast cells, which express classical store-operated Ca(2+) entry mediated by Orai channels. The consequences of inhibitory effects on Ca(2+) signalling in RBL-2H3 cells were investigated at the level of both degranulation and nuclear factor of activated T-cells activation. Key results: Pyr3, a previously suggested selective inhibitor of TRPC3, inhibited Orai1- and TRPC3-mediated Ca(2+) entry and currents as well as mast cell activation with similar potency. By contrast, Pyr6 exhibited a 37-fold higher potency to inhibit Orai1-mediated Ca(2+) entry as compared with TRPC3-mediated Ca(2+) entry and potently suppressed mast cell activation. The novel pyrazole Pyr10 displayed substantial selectivity for TRPC3-mediated responses (18-fold) and the selective block of TRPC3 channels by Pyr10 barely affected mast cell activation. Conclusions and implications: The pyrazole derivatives Pyr6 and Pyr10 are able to distinguish between TRPC and Orai-mediated Ca(2+) entry and may serve as useful tools for the analysis of cellular functions of the underlying Ca(2+) channels.