Pyruvic aldehyde
(Synonyms: 丙酮醛) 目录号 : GC30214Pyruvicaldehyde常被用作有机合成中的一种试剂,一种调味剂以及在鞣革中的应用。
Cas No.:78-98-8
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >40.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Pyruvic aldehyde is often used as a reagent in organic synthesis, as a flavoring agent, and in tanning.
Cas No. | 78-98-8 | SDF | |
别名 | 丙酮醛 | ||
Canonical SMILES | CC(C=O)=O | ||
分子式 | C3H4O2 | 分子量 | 72.06 |
溶解度 | 储存条件 | Store at 2-8°C | |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 13.8773 mL | 69.3866 mL | 138.7732 mL |
5 mM | 2.7755 mL | 13.8773 mL | 27.7546 mL |
10 mM | 1.3877 mL | 6.9387 mL | 13.8773 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes
Post-translational modifications (PTMs) regulate enzyme structure and function to expand the functional proteome. Many of these PTMs are derived from cellular metabolites and serve as feedback and feedforward mechanisms of regulation. We have identified a PTM that is derived from the glycolytic by-product, methylglyoxal. This reactive metabolite is rapidly conjugated to glutathione via glyoxalase 1, generating lactoylglutathione (LGSH). LGSH is hydrolyzed by glyoxalase 2 (GLO2), cycling glutathione and generating D-lactate. We have identified the non-enzymatic acyl transfer of the lactate moiety from LGSH to protein Lys residues, generating a "LactoylLys" modification on proteins. GLO2 knockout cells have elevated LGSH and a consequent marked increase in LactoylLys. Using an alkyne-tagged methylglyoxal analog, we show that these modifications are enriched on glycolytic enzymes and regulate glycolysis. Collectively, these data suggest a previously unexplored feedback mechanism that may serve to regulate glycolytic flux under hyperglycemic or Warburg-like conditions.
Glyoxalase biochemistry
The glyoxalase enzyme system utilizes intracellular thiols such as glutathione to convert α-ketoaldehydes, such as methylglyoxal, into D-hydroxyacids. This overview discusses several main aspects of the glyoxalase system and its likely function in the cell. The control of methylglyoxal levels in the cell is an important biochemical imperative and high levels have been associated with major medical symptoms that relate to this metabolite's capability to covalently modify proteins, lipids and nucleic acid.
Methylglyoxal
Methylglyoxal and Its Adducts: Induction, Repair, and Association with Disease
Metabolism is an essential part of life that provides energy for cell growth. During metabolic flux, reactive electrophiles are produced that covalently modify macromolecules, leading to detrimental cellular effects. Methylglyoxal (MG) is an abundant electrophile formed from lipid, protein, and glucose metabolism at intracellular levels of 1-4 μM. MG covalently modifies DNA, RNA, and protein, forming advanced glycation end products (MG-AGEs). MG and MG-AGEs are associated with the onset and progression of many pathologies including diabetes, cancer, and liver and kidney disease. Regulating MG and MG-AGEs is a potential strategy to prevent disease, and they may also have utility as biomarkers to predict disease risk, onset, and progression. Here, we review recent advances and knowledge surrounding MG, including its production and elimination, mechanisms of MG-AGEs formation, the physiological impact of MG and MG-AGEs in disease onset and progression, and the latter in the context of its receptor RAGE. We also discuss methods for measuring MG and MG-AGEs and their clinical application as prognostic biomarkers to allow for early detection and intervention prior to disease onset. Finally, we consider relevant clinical applications and current therapeutic strategies aimed at targeting MG, MG-AGEs, and RAGE to ultimately improve patient outcomes.
Synergistic sequence contributions bias glycation outcomes
The methylglyoxal-derived hydroimidazolone isomer, MGH-1, is an abundant advanced glycation end-product (AGE) associated with disease and age-related disorders. As AGE formation occurs spontaneously and without an enzyme, it remains unknown why certain sites on distinct proteins become modified with specific AGEs. Here, we use a combinatorial peptide library to determine the chemical features that favor MGH-1. When properly positioned, tyrosine is found to play an active mechanistic role that facilitates MGH-1 formation. This work offers mechanistic insight connecting multiple AGEs, including MGH-1 and carboxyethylarginine (CEA), and reconciles the role of negative charge in influencing glycation outcomes. Further, this study provides clear evidence that glycation outcomes can be influenced through long- or medium-range cooperative interactions. This work demonstrates that these chemical features also predictably template selective glycation on full-length protein targets expressed in mammalian cells. This information is vital for developing methods that control glycation in living cells and will enable the study of glycation as a functional post-translational modification.