QX77
目录号 : GC32962An activator of chaperone-mediated autophagy
Cas No.:1798331-92-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Cell experiment: | Mouse embryo fibroblasts are preincubated with QX77 or vehicle (DMSO) 48 h before the addition of tert-butyl hydroperoxide. After an overnight incubation, cell viability is determined by a modified version of the MTT assay[1]. |
References: [1]. Zhang J, et al. Cystinosin, the small GTPase Rab11, and the Rab7 effector RILP regulate intracellular trafficking of the chaperone-mediated autophagy receptor LAMP2A. J Biol Chem. 2017 Jun 23;292(25):10328-10346. |
QX-77 is an activator of chaperone-mediated autophagy (CMA).1 It decreases mouse embryonic fibroblast (MEF) and Neuro2a cell death induced by paraquat or oleic acid . QX-77 (20 ?M) rescues defective trafficking and lysosomal localization of the CMA receptor LAMP2A in Ctns-/- MEFs and CTNS knockout human proximal tubule cells, models of the lysosomal storage disorder cystinosis.2
1.Cuervo, A.M., Gavathiotis, E., Xin, Q., et al.Retinoic acid receptor antagonists as chaperone-mediated autophagy modulators and uses thereof(2015) 2.Zhang, J., Johnson, J.L., He, J., et al.Cystinosin, the small GTPase Rab11, and the Rab7 effector RILP regulate intracellular trafficking of the chaperone-mediated autophagy receptor LAMP2AJ. Biol. Chem.292(25)10328-10346(2017)
Cas No. | 1798331-92-6 | SDF | |
Canonical SMILES | CC(NC1=CC=C(C2=NC3=CC=C(Cl)C=C3OC2)C=C1)=O | ||
分子式 | C16H13ClN2O2 | 分子量 | 300.74 |
溶解度 | DMSO : ≥ 64 mg/mL (212.81 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.3251 mL | 16.6257 mL | 33.2513 mL |
5 mM | 0.665 mL | 3.3251 mL | 6.6503 mL |
10 mM | 0.3325 mL | 1.6626 mL | 3.3251 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Glia maturation factor-β induces ferroptosis by impairing chaperone-mediated autophagic degradation of ACSL4 in early diabetic retinopathy
Redox Biol 2022 Jun;52:102292.PMID:35325805DOI:10.1016/j.redox.2022.102292.
Diabetic retinopathy (DR) is one of the leading causes of blindness in the world, and timely prevention and treatment are very important. Previously, we found that a neurodegenerative factor, Glia maturation factor-β (GMFB), was upregulated in the vitreous at a very early stage of diabetes, which may play an important role in pathogenesis. Here, we found that in a high glucose environment, large amounts of GMFB protein can be secreted in the vitreous, which translocates the ATPase ATP6V1A from the lysosome, preventing its assembly and alkalinizing the lysosome in the retinal pigment epithelial (RPE) cells. ACSL4 protein can be recognized by HSC70, the receptor for chaperone-mediated autophagy, and finally digested in the lysosome. Abnormalities in the autophagy-lysosome degradation process lead to its accumulation, which catalyzes the production of lethal lipid species and finally induces ferroptosis in RPE cells. GMFB antibody, lysosome activator NKH477, CMA activator QX77, and ferroptosis inhibitor Liproxstatin-1 were all effective in preventing early diabetic retinopathy and maintaining normal visual function, which has powerful clinical application value. Our research broadens the understanding of the relationship between autophagy and ferroptosis and provides a new therapeutic target for the treatment of DR.
Milk Fat Globule-EGF Factor 8 Alleviates Pancreatic Fibrosis by Inhibiting ER Stress-Induced Chaperone-Mediated Autophagy in Mice
Front Pharmacol 2021 Aug 5;12:707259.PMID:34421598DOI:10.3389/fphar.2021.707259.
Pancreatic fibrosis is an important pathophysiological feature of chronic pancreatitis (CP). Our recent study has shown that milk fat globule-EGF factor 8 (MFG-E8) is beneficial in acute pancreatitis. However, its role in CP remained unknown. To study this, CP was induced in male adult Mfge8-knockout (Mfge8-KO) mice and wild type (WT) mice by six intraperitoneal injections of cerulein (50 μg/kg/body weight) twice a week for 10 weeks. The results showed that knockout of mfge8 gene aggravated pancreatic fibrosis after repeated cerulein injection. In WT mice, pancreatic levels of MFG-E8 were reduced after induction of CP and administration of recombinant MFG-E8 alleviated cerulein-induced pancreatic fibrosis. The protective effect of MFG-E8 in CP was associated with reduced autophagy and oxidative stress. In human pancreatic stellate cells (PSCs), MFG-E8 inhibited TGF-β1-induced ER stress and autophagy. MFG-E8 downregulated the expression of lysosomal associated membrane protein 2A (LAMP2A), a key factor in ER stress-induced chaperone-mediated autophagy (CMA). QX77, an activator of CMA, eliminated the effects of MFG-E8 on TGF-β1-induced PSC activation. In conclusion, MFG-E8 appears to mitigate pancreatic fibrosis via inhibiting ER stress-induced chaperone-mediated autophagy. Recombinant MFG-E8 may be developed as a novel treatment for pancreatic fibrosis in CP.