(R)-Bromoenol lactone
(Synonyms: (R,E)-Bromoenol lactone) 目录号 : GC40678A selective iPLA2γ inhibitor
Cas No.:478288-90-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
The phospholipases are an extensive family of lipid hydrolases that function in cell signaling, digestion, membrane remodeling, and as venom components. The calcium-independent phospholipases (iPLA2) are a PLA2 subfamily closely associated with the release of arachidonic acid in response to physiologic stimuli. (R)-Bromoenol lactone ((R)-BEL) is an irreversible, chiral, mechanism-based inhibitor of calcium-independent phospholipase γ (iPLA2γ). Unlike (S)-BEL, (R)-BEL does not inhibit iPLA2β except at high doses of 20-30 µM. (R)-BEL inhibits human recombinant iPLA2γ with an IC50 of approximately 0.6 µM.
Cas No. | 478288-90-3 | SDF | |
别名 | (R,E)-Bromoenol lactone | ||
Canonical SMILES | Br/C=C(CC1)/OC([C@@]1([H])C2=CC=CC3=CC=CC=C32)=O | ||
分子式 | C16H13BrO2 | 分子量 | 317.2 |
溶解度 | DMF: 50 mg/ml,DMSO: 25 mg/ml,Ethanol: 5 mg/ml,PBS (pH 7.2): .05 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.1526 mL | 15.7629 mL | 31.5259 mL |
5 mM | 0.6305 mL | 3.1526 mL | 6.3052 mL |
10 mM | 0.3153 mL | 1.5763 mL | 3.1526 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
The role of calcium-independent phospholipase A2γ in modulation of aqueous humor drainage and Ca2+ sensitization of trabecular meshwork contraction
Am J Physiol Cell Physiol 2012 Apr 1;302(7):C979-91.PMID:22237407DOI:10.1152/ajpcell.00396.2011.
The contractile and relaxation characteristics of trabecular meshwork (TM) are presumed to influence aqueous humor (AH) drainage and intraocular pressure. The mechanisms underlying regulation of TM cell contractile properties, however, are not well understood. This study investigates the role of calcium-independent phospholipase A(2) (iPLA(2)), which controls eicosanoid synthesis, in regulation of TM cell contraction and AH outflow using mechanism-based isoform specific inhibitors (R)-Bromoenol lactone (R-BEL, iPLA(2)γ specific) and (S)-bromoenol lactone (S-BEL, iPLA(2)β specific). Immunohistochemical analysis revealed intense staining for both iPLA(2)β and γ isoforms throughout the TM, juxtacanalicular tissue, and Schlemm's canal of human eye. Inhibition of iPLA(2)γ by R-BEL or small interfering RNA-mediated silencing of iPLA(2)γ expression induced dramatic changes in TM cell morphology, and decreased actin stress fibers, focal adhesions, and myosin light-chain (MLC) phosphorylation. AH outflow facility increased progressively and significantly in enucleated porcine eyes perfused with R-BEL. This response was associated with a significant decrease in TM tissue MLC phosphorylation and alterations in the morphology of aqueous plexi in R-BEL-perfused eyes. In contrast, S-BEL did not affect either of these parameters. Additionally, R-BEL-induced cellular relaxation of the TM was associated with a significant decrease in the levels of active Rho GTPase, phospho-MLC phosphatase, phospho-CPI-17, and arachidonic acid. Taken together, these observations demonstrate that iPLA(2)γ plays a significant and isoform-specific role in regulation of AH outflow facility by altering the contractile characteristics of the TM. The effects of iPLA(2)γ on TM contractile status appear to involve arachidonic acid and Rho GTPase signaling pathways.
Lysosomal acid lipase is the major acid retinyl ester hydrolase in cultured human hepatic stellate cells but not essential for retinyl ester degradation
Biochim Biophys Acta Mol Cell Biol Lipids 2020 Aug;1865(8):158730.PMID:32361002DOI:10.1016/j.bbalip.2020.158730.
Vitamin A is stored as retinyl esters (REs) in lipid droplets of hepatic stellate cells (HSCs). To date, two different pathways are known to facilitate the breakdown of REs: (i) Hydrolysis of REs by neutral lipases, and (ii) whole lipid droplet degradation in autolysosomes by acid hydrolysis. In this study, we evaluated the contribution of neutral and acid RE hydrolases to the breakdown of REs in human HSCs. (R)-Bromoenol lactone (R-BEL), inhibitor of adipose triglyceride lipase (ATGL) and patatin-like phospholipase domain-containing 3 (PNPLA3), the hormone-sensitive lipase (HSL) inhibitor 76-0079, as well as the serine-hydrolase inhibitor Orlistat reduced neutral RE hydrolase activity of LX-2 cell-lysates between 20 and 50%. Interestingly, in pulse-chase experiments, R-BEL, 76-0079, as well as Orlistat exerted little to no effect on cellular RE breakdown of LX-2 cells as well as primary human HSCs. In contrast, Lalistat2, a specific lysosomal acid lipase (LAL) inhibitor, virtually blunted acid in vitro RE hydrolase activity of LX-2 cells. Accordingly, HSCs isolated from LAL-deficient mice showed RE accumulation and were virtually devoid of acidic RE hydrolase activity. In pulse-chase experiments however, LAL-deficient HSCs, similar to LX-2 cells and primary human HSCs, were not defective in degrading REs. In summary, results demonstrate that ATGL, PNPLA3, and HSL contribute to neutral RE hydrolysis of human HSCs. LAL is the major acid RE hydrolase in HSCs. Yet, LAL is not limiting for RE degradation under serum-starvation. Together, results suggest that RE breakdown of HSCs is facilitated by (a) so far unknown, non-Orlistat inhibitable RE-hydrolase(s).
Urothelial cell platelet-activating factor production mediated by calcium-independent phospholipase A2γ
Urology 2011 Jan;77(1):248.e1-7.PMID:21094990DOI:10.1016/j.urology.2010.08.032.
Objectives: To determine the effect of phospholipase A(2) (PLA(2)) inhibitors on urothelial cell platelet-activating factor (PAF) production in response to tryptase stimulation. Methods: Urothelial cells isolated from normal human ureters were immortalized with the human papillomavirus type 16E6E7 cell line (TEU-2 cells). PLA(2) activity in TEU-2 cells was measured using (16:0, [(3)H]18:1) plasmenylcholine and phosphatidylcholine substrates in the presence and absence of calcium. [(3)H]PAF production was measured in TEU-2 cells prelabeled with [(3)H] acetic acid. PAF-acetylhydrolase activity was measured by determining the amount of [(3)H] acetate hydrolyzed from [(3)H]PAF incubated with TEU-2 cellular protein. Adherence of human polymorphonuclear leukocyte (PMN) to TEU-2 cells was assessed by measuring myeloperoxidase activity in adherent PMNs after incubation with TEU-2 cells. Results: Most PLA(2) activity measured in TEU-2 cells was determined to be membrane-associated, calcium-independent PLA(2) and selective for plasmenylcholine substrate. Stimulation of TEU-2 cells with tryptase results in increased production of PAF and increased PMN adherence that were inhibited completely by pretreatment with the membrane-associated, calcium-independent PLA(2)γ-selective inhibitor (R)-Bromoenol lactone. Pretreatment with the cytosolic PLA(2) inhibitor methyl arachidonyl fluorophosphonate resulted in potentiation of tryptase-stimulated PAF production and PMN adherence to TEU-2 cells that is a result of PAF-acetylhydrolase inhibition. Conclusions: Tryptase stimulation of TEU-2 cells results in activation of membrane-associated, calcium-independent PLA(2)γ, leading to an increase in PAF production and increased PMN adherence. Inhibition of TEU-2 cell PAF-acetylhydrolase activity with methyl arachidonyl fluorophosphonate potentiated tryptase-stimulated PAF production and PMN adherence.
Calcium-independent phospholipase A2γ enhances activation of the ATF6 transcription factor during endoplasmic reticulum stress
J Biol Chem 2015 Jan 30;290(5):3009-20.PMID:25492867DOI:10.1074/jbc.M114.592261.
Injury of visceral glomerular epithelial cells (GECs) causes proteinuria in many glomerular diseases. We reported previously that calcium-independent phospholipase A2γ (iPLA2γ) is cytoprotective against complement-mediated GEC injury. Because iPLA2γ is localized at the endoplasmic reticulum (ER), this study addressed whether the cytoprotective effect of iPLA2γ involves the ER stress unfolded protein response (UPR). In cultured rat GECs, overexpression of the full-length iPLA2γ, but not a mutant iPLA2γ that fails to associate with the ER, augmented tunicamycin-induced activation of activating transcription factor-6 (ATF6) and induction of the ER chaperones, glucose-regulated protein 94 (GRP94) and glucose-regulated protein 78 (GRP78). Augmented responses were inhibited by the iPLA2γ inhibitor, (R)-Bromoenol lactone, but not by the cyclooxygenase inhibitor, indomethacin. Tunicamycin-induced cytotoxicity was reduced in GECs expressing iPLA2γ, and the cytoprotection was reversed by dominant-negative ATF6. GECs from iPLA2γ knock-out mice showed blunted ATF6 activation and chaperone up-regulation in response to tunicamycin. Unlike ATF6, the two other UPR pathways, i.e. inositol-requiring enzyme 1α and protein kinase RNA-like ER kinase pathways, were not affected by iPLA2γ. Thus, in GECs, iPLA2γ amplified activation of the ATF6 pathway of the UPR, resulting in up-regulation of ER chaperones and cytoprotection. These effects were dependent on iPLA2γ catalytic activity and association with the ER but not on prostanoids. Modulating iPLA2γ activity may provide opportunities for pharmacological intervention in glomerular diseases associated with ER stress.
Anti-angiogenic pigment epithelium-derived factor regulates hepatocyte triglyceride content through adipose triglyceride lipase (ATGL)
J Hepatol 2008 Mar;48(3):471-8.PMID:18191271DOI:10.1016/j.jhep.2007.10.012.
Background/aims: Anti-angiogenic pigment epithelium-derived factor (PEDF) is a 50 kDa secreted glycoprotein that is highly expressed in hepatocytes. Adipose triglyceride lipase (ATGL), a novel lipase critical for triglyceride metabolism, is a receptor for PEDF. We postulated that hepatocyte triglyceride metabolism was dependent on interactions between PEDF and ATGL, and loss of PEDF would impair mobilization of triglycerides in the liver. Methods: Immunoprecipitation studies were performed in PEDF null and control hepatocytes with recombinant PEDF (rPEDF) as bait. Immunofluorescent microscopy was used to localize ATGL. Triglyceride content was analyzed in hepatocytes and in whole liver with and without rPEDF. ATGL was blocked using an inhibitor, (R)-Bromoenol lactone. Results: PEDF co-immunoprecipitated with ATGL in hepatic and HCC lysates. All PEDF deficient livers demonstrated steatosis. Triglyceride content was significantly increased in PEDF null livers compared to wildtype (p<0.05) and in isolated hepatocytes (p<0.01). Treatment of PEDF null hepatocytes with rPEDF decreased TG content (p<0.05) and this activity was dependent on ATGL. Conclusions: Our results identify a novel role for PEDF in hepatic triglyceride homeostasis through binding to ATGL and demonstrate that rPEDF and ATGL localize to adiposomes in hepatocytes. Dysregulation of this pathway may be one mechanism underlying fatty liver disease.