Home>>Signaling Pathways>> Proteases>> Endogenous Metabolite>>(R)-(+)-Citronellal

(R)-(+)-Citronellal Sale

(Synonyms: (R)-(+)-香茅醛; (+)-Citronellal) 目录号 : GC34442

(R)-(+)-Citronellal可从柑橘、薰衣草和桉树油中分离得到,是一种单萜化合物,是香茅醛的主要成分,具有独特的柠檬香味。是一种调味剂。可用于驱虫和抗真菌。

(R)-(+)-Citronellal Chemical Structure

Cas No.:2385-77-5

规格 价格 库存 购买数量
100mg
¥540.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

(R)-(+)-Citronellal, isolated from citrus, lavender and eucalyptus oils, is a monoterpenoid and main component of citronellal oil with a distinct lemon scent. A flavouring agent. Used for insect repellent and antifungal properties[1][2]. Human Endogenous Metabolite

[1]. Kim E, et al. Fumigant antifungal activity of Myrtaceae essential oils and constituents from Leptospermum petersonii against three Aspergillus species. Molecules. 2012 Sep 3;17(9):10459-69. [2]. Showing metabocard for (R)-Citronellal (HMDB0035820)

Chemical Properties

Cas No. 2385-77-5 SDF
别名 (R)-(+)-香茅醛; (+)-Citronellal
Canonical SMILES C/C(C)=C\CC[C@@H](C)CC=O
分子式 C10H18O 分子量 154.25
溶解度 DMSO : 100 mg/mL (648.30 mM; Need ultrasonic) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 6.483 mL 32.4149 mL 64.8298 mL
5 mM 1.2966 mL 6.483 mL 12.966 mL
10 mM 0.6483 mL 3.2415 mL 6.483 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Tunable Production of ( R)- or ( S)-Citronellal from Geraniol via a Bienzymatic Cascade Using a Copper Radical Alcohol Oxidase and Old Yellow Enzyme

ACS Catal 2022 Jan 21;12(2):1111-1116.PMID:35096467DOI:10.1021/acscatal.1c05334.

Biocatalytic pathways for the synthesis of (-)-menthol, the most sold flavor worldwide, are highly sought-after. To access the key intermediate (R)-citronellal used in current major industrial production routes, we established a one-pot bienzymatic cascade from inexpensive geraniol, overcoming the problematic biocatalytic reduction of the mixture of (E/Z)-isomers in citral by harnessing a copper radical oxidase (CgrAlcOx) and an old yellow enzyme (OYE). The cascade using OYE2 delivered 95.1% conversion to (R)-citronellal with 95.9% ee, a 62 mg scale-up affording high yield and similar optical purity. An alternative OYE, GluER, gave (S)-citronellal from geraniol with 95.3% conversion and 99.2% ee.

Design and engineering of whole-cell biocatalyst for efficient synthesis of (R)-citronellal

Microb Biotechnol 2022 May;15(5):1486-1498.PMID:34729922DOI:10.1111/1751-7915.13958.

Bioproduction of optical pure (R)-citronellal from (E/Z)-citral at high substrate loading remains challenging. Low catalytic efficiency of (R)-stereoselective ene reductases towards crude citral mixture is one of the major bottlenecks. Herein, a structure-based engineering strategy was adopted to enhance the catalytic efficiency and stereoselectivity of an ene reductase (OYE2p) from Saccharomyces cerevisiae YJM1341 towards (E/Z)-citral. On basis of homologous modelling, molecular docking analysis and alanine scanning at the binding pocket of OYE2p, a mutant Y84A was obtained with simultaneous increase in catalytic efficiency and stereoselectivity. Furthermore, site-saturation mutagenesis of Y84 yielded seven mutants with improved activity and stereoselectivity in the (E/Z)-citral reduction. Among them, the variant Y84V exhibited an 18.3% and 71.3% rise in catalytic efficiency (kcat /Km ) for (Z)-citral and (E)-citral respectively. Meanwhile, the stereoselectivity of Y84V was improved from 89.2% to 98.0% in the reduction in (E/Z)-citral. The docking analysis and molecular dynamics simulation of OYE2p and its variants revealed that the substitution Y84V enabled (E)-citral and (Z)-citral to bind with a smaller distance to the key hydrogen donors at a modified (R)-selective binding mode. The variant Y84V was then co-expressed with glucose dehydrogenase from Bacillus megaterium in E. coli D4, in which competing prim-alcohol dehydrogenase genes were deleted to prevent the undesired reduction in the aldehyde moiety of citral and citronellal. Employing this biocatalyst, 106 g l-1 (E/Z)-citral was completely converted into (R)-citronellal with 95.4% ee value and a high space-time yield of 121.6 g l-1 day-1 . The work highlights the synthetic potential of Y84V, which enabled the highest productivity of (R)-citronellal from (E/Z)-citral in high enantiopurity so far.

The Odorant ( R)-Citronellal Attenuates Caffeine Bitterness by Inhibiting the Bitter Receptors TAS2R43 and TAS2R46

J Agric Food Chem 2018 Mar 14;66(10):2301-2311.PMID:27569025DOI:10.1021/acs.jafc.6b03554.

Sensory studies showed the volatile fraction of lemon grass and its main constituent, the odor-active citronellal, to significantly decrease the perceived bitterness of a black tea infusion as well as caffeine solutions. Seven citronellal-related derivatives were synthesized and shown to inhibit the perceived bitterness of caffeine in a structure-dependent manner. The aldehyde function at carbon 1, the ( R)-configuration of the methyl-branched carbon 3, and a hydrophobic carbon chain were found to favor the bitter inhibitory activity of citronellal; for example, even low concentrations of 25 ppm were observed to reduce bitterness perception of caffeine solution (6 mmol/L) by 32%, whereas ( R)-citronellic acid (100 pm) showed a reduction of only 21% and ( R)-citronellol (100 pm) was completely inactive. Cell-based functional experiments, conducted with the human bitter taste receptors TAS2R7, TAS2R10, TAS2R14, TAS2R43, and TAS2R46 reported to be sensitive to caffeine, revealed ( R)-citronellal to completely block caffeine-induced calcium signals in TAS2R43-expressing cells, and, to a lesser extent, in TAS2R46-expressing cells. Stimulation of TAS2R43-expressing cells with structurally different bitter agonists identified ( R)-citronellal as a general allosteric inhibitor of TAS2R43. Further structure/activity studies indicated 3-methyl-branched aliphatic aldehydes with a carbon chain of ≥4 C atoms as best TAS2R43 antagonists. Whereas odor-taste interactions have been mainly interpreted in the literature to be caused by a central neuronal integration of odors and tastes, rather than by peripheral events at the level of reception, the findings of this study open up a new dimension regarding the interaction of the two chemical senses.

Synthesis, Antimicrobial, and Antioxidant Activities of Chalcogen-Containing Nitrone Derivatives from (R)-citronellal

Medicines (Basel) 2017 Jun 10;4(2):39.PMID:28930254DOI:10.3390/medicines4020039.

Background: The main constituents of Cymbopogonnardus (L) Rendle and C. citratus (DC) Stapfessential oils are (R)-citronellal and citral, respectively. Organochalcogen compounds can boost the biological activities of natural products. Methods: Several chalcogen-containing nitrones derived from (R)-citronellal and citral were prepared and evaluated for their antimicrobial and antioxidant activities. The antimicrobial activity was evaluated by the disc diffusion test and the antioxidant properties were evaluated in vitro by DPPH (1,1-diphenyl-2-picryl-hydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), and FRAP (ferric ion reducing antioxidant power) assays. Results: In the antimicrobial assay, (E)-N,3,7-trimethyl-3-(phenylthio)oct-6-en-1-imine oxide 5c exhibited halos between 21.5 mm (Escherichia coli O157:H7) and 26.0 mm (Listeria monocytogenes), while (E)-N,3,7-trimethyloct-6-en-1-imine oxide 5d presented halos between 22.5 mm (E. coli O157:H7) and 31.0 mm (L. monocytogenes). (E)-N,3,7-Trimethyl-2-(phenylthio)oct-6-en-1-imine oxide 5a showed the lowest minimal inhibitory concentration (MIC) value against Bacillus cereus (0.48 mM), and 5c was the most potent bactericide, with a minimal bactericidal concentration (MBC) of 0.52 mM for E. coli O157:H7. In the antioxidant assays, 5c, 5d, and 10 ((E)-3,7-dimethyl-2-(phenylselanyl)oct-6-enal oxime) were the most actives in the DPPH, ABTS, and FRAP assays, respectively. Conclusions: The presence of a phenylthio group in the nitrone increases its antimicrobial activity against Gram-positive and Gram-negative foodborne pathogens in the disk diffusion test and the antioxidant activity in vitro.

Engineering the Enantioselectivity of Yeast Old Yellow Enzyme OYE2y in Asymmetric Reduction of ( E/ Z)-Citral to ( R)-Citronellal

Molecules 2019 Mar 18;24(6):1057.PMID:30889828DOI:10.3390/molecules24061057.

The members of the Old Yellow Enzyme (OYE) family are capable of catalyzing the asymmetric reduction of (E/Z)-citral to (R)-citronellal-a key intermediate in the synthesis of L-menthol. The applications of OYE-mediated biotransformation are usually hampered by its insufficient enantioselectivity and low activity. Here, the (R)-enantioselectivity of Old Yellow Enzyme from Saccharomyces cerevisiae CICC1060 (OYE2y) was enhanced through protein engineering. The single mutations of OYE2y revealed that the sites R330 and P76 could act as the enantioselectivity switch of OYE2y. Site-saturation mutagenesis was conducted to generate all possible replacements for the sites R330 and P76, yielding 17 and five variants with improved (R)-enantioselectivity in the (E/Z)-citral reduction, respectively. Among them, the variants R330H and P76C partly reversed the neral derived enantioselectivity from 32.66% e.e. (S) to 71.92% e.e. (R) and 37.50% e.e. (R), respectively. The docking analysis of OYE2y and its variants revealed that the substitutions R330H and P76C enabled neral to bind with a flipped orientation in the active site and thus reverse the enantioselectivity. Remarkably, the double substitutions of R330H/P76M, P76G/R330H, or P76S/R330H further improved (R)-enantioselectivity to >99% e.e. in the reduction of (E)-citral or (E/Z)-citral. The results demonstrated that it was feasible to alter the enantioselectivity of OYEs through engineering key residue distant from active sites, e.g., R330 in OYE2y.