R243
目录号 : GC62724R243 is an inhibitor of Chemokine (C-C motif) receptor 8 (CCR8) signaling and chemotaxis.
Cas No.:688352-84-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
R243 is an inhibitor of Chemokine (C-C motif) receptor 8 (CCR8) signaling and chemotaxis.
[1] Tomoyuki Oshio, et al. PLoS One. 2014 Apr 8;9(4):e94445.
Cas No. | 688352-84-3 | SDF | |
分子式 | C21H27NO4 | 分子量 | 357.44 |
溶解度 | DMSO : 125 mg/mL (349.71 mM; Need ultrasonic) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.7977 mL | 13.9884 mL | 27.9767 mL |
5 mM | 0.5595 mL | 2.7977 mL | 5.5953 mL |
10 mM | 0.2798 mL | 1.3988 mL | 2.7977 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Chemokine receptor CCR8 is required for lipopolysaccharide-triggered cytokine production in mouse peritoneal macrophages
PLoS One 2014 Apr 8;9(4):e94445.PMID:24714157DOI:10.1371/journal.pone.0094445.
Chemokine (C-C motif) receptor 8 (CCR8), the chemokine receptor for chemokine (C-C motif) ligand 1 (CCL1), is expressed in T-helper type-2 lymphocytes and peritoneal macrophages (PMφ) and is involved in various pathological conditions, including peritoneal adhesions. However, the role of CCR8 in inflammatory responses is not fully elucidated. To investigate the function of CCR8 in macrophages, we compared cytokine secretion from mouse PMφ or bone marrow-derived macrophages (BMMφ) stimulated with various Toll-like receptor (TLR) ligands in CCR8 deficient (CCR8-/-) and wild-type (WT) mice. We found that CCR8-/- PMφ demonstrated attenuated secretion of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-10 when stimulated with lipopolysaccharide (LPS). In particular, LPS-induced IL-10 production absolutely required CCR8. CCR8-dependent cytokine secretion was characteristic of PMφ but not BMMφ. To further investigate this result, we selected the small molecule compound R243 from a library of compounds with CCR8-antagonistic effects on CCL1-induced Ca2+ flux and CCL1-driven PMφ aggregation. Similar to CCR8-/- PMφ, R243 attenuated secretion of TNF-α, IL-6, and most strikingly IL-10 from WT PMφ, but not BMMφ. CCR8-/- PMφ and R243-treated WT PMφ both showed suppressed c-jun N-terminal kinase activity and nuclear factor-κB signaling after LPS treatment when compared with WT PMφ. A c-Jun signaling pathway inhibitor also produced an inhibitory effect on LPS-induced cytokine secretion that was similar to that of CCR8 deficiency or R243 treatment. As seen in CCR8-/- mice, administration of R243 attenuated peritoneal adhesions in vivo. R243 also prevented hapten-induced colitis. These results are indicative of cross talk between signaling pathways downstream of CCR8 and TLR-4 that induces cytokine production by PMφ. Through use of CCR8-/- mice and the new CCR8 inhibitor, R243, we identified a novel macrophage innate immune response pathway that involves a chemokine receptor.
Kappa-opioid receptor-mediated thermal analgesia evoked by the intrathecal administration of the chemokine CCL1 in mice
Fundam Clin Pharmacol 2021 Dec;35(6):1109-1118.PMID:33905573DOI:10.1111/fcp.12685.
Background: The chemokine CC motif ligand 1 (CCL1) participates in immune cell recruitment and, as other chemokines, is also involved in nociceptive processing. In contrast with previous reports indicating its participation in allodynia and cold hypernociception when spinally administered, its ability to evoke heat thermal analgesia, mediated by circulating leukocytes and endocannabinoids, after systemic administration has recently been reported. Objectives: Aiming to explore the role played by CCL1 on spinal nociception, we study here the effect of its intrathecal administration on thermal nociception in mice. Methods: Behavioral nociceptive assays, immunohistochemical experiments, white cell blood depletion procedures and qRT-PCR experiments were performed. Results: The intrathecal administration of CCL1 (0.3-30 ng) produced analgesia as measured by the unilateral hot plate test. This effect peaked 1 h after injection, was prevented by the CCR8 antagonist R243 and was accompanied by a reduction of c-Fos expression in spinal neurons. Whereas blood leukocyte depletion did not modify it, analgesia was abolished by the microglial inhibitor minocycline, but not the astroglial inhibitor aminoadipate. Furthermore, antinociception remained unmodified by the coadministration of cannabinoid type 1 or 2 receptors antagonists. However, it was reversed by naloxone but not by selective blockade of mu- or delta-opioid receptors. The inhibitory effect induced by the selective kappa-opioid receptor antagonist, nor-binaltorphimine, and by an anti-dynorphin A 1-17 antibody indicates that analgesia evoked by spinal CCL1 is mediated by endogenous dynorphins acting on kappa-opioid receptors. Conclusions: Endogenous dynorphin and microglia behave as key players in heat thermal analgesia evoked by spinal CCL1 in mice.
Structural insights into the inhibition mechanism of bacterial toxin LsoA by bacteriophage antitoxin Dmd
Mol Microbiol 2016 Sep;101(5):757-69.PMID:27169810DOI:10.1111/mmi.13420.
Bacteria have obtained a variety of resistance mechanisms including toxin-antitoxin (TA) systems against bacteriophages (phages), whereas phages have also evolved to overcome bacterial anti-phage mechanisms. Dmd from T4 phage can suppress the toxicities of homologous toxins LsoA and RnlA from Escherichia coli, representing the first example of a phage antitoxin against multiple bacterial toxins in known TA systems. Here, the crystal structure of LsoA-Dmd complex showed Dmd is inserted into the deep groove between the N-terminal repeated domain (NRD) and the Dmd-binding domain (DBD) of LsoA. The NRD shifts significantly from a 'closed' to an 'open' conformation upon Dmd binding. Site-directed mutagenesis of Dmd revealed the conserved residues (W31 and N40) are necessary for LsoA binding and the toxicity suppression as determined by pull-down and cell toxicity assays. Further mutagenesis identified the conserved Dmd-binding residues (R243, E246 and R305) of LsoA are vital for its toxicity, and suggested Dmd and LsoB may possess different inhibitory mechanisms against LsoA toxicity. Our structure-function studies demonstrate Dmd can recognize LsoA and inhibit its toxicity by occupying the active site possibly via substrate mimicry. These findings have provided unique insights into the defense and counter-defense mechanisms between bacteria and phages in their co-evolution.
Spectrum of PAH gene mutations in 1547 phenylketonuria patients from Iran: a comprehensive systematic review
Metab Brain Dis 2021 Jun;36(5):767-780.PMID:33625639DOI:10.1007/s11011-021-00698-4.
As one of the highest prevalence rates in the world, the prevalence of Phenylketonuria (PKU) in Iran has been estimated at 16.5 per 100,000 neonates. The objective of this study was to evaluate the spectrum and frequency of mutations of the phenylalanine hydroxylase (PAH) gene in Iranian PKU patients. A systematic review was carried out on previous studies on PAH gene mutations in Iranian PKU patients. A complete search was carried out on the on-line databases of Scopus, Web of Science, PubMed/Medline, ProQuest, Science Direct, Magiran, SID and the search engine Google Scholar. The keywords of Phenylketonuria, PKU, Phenylalanine Hydroxylase, PAH, and Iran, as well as their Persian equivalents, in all possible combinations were used. Finally, a total of 21 eligible articles with a sample size of 1547 Iranian PKU patients, published between 2003 and 2020, were included in our systematic review. A total of 129 different PAH gene mutations including, IVS10-11G > A (c.1066-11G > A) (19.23%), p.R261Q (c.782G > A) (7.63%), p.P281L (c.842C > T) (6.24%), IVS2 + 5G > C (c.168 + 5G > C) (5.75%), p.R243* (c.727C > T) (3.59%), IVS9 + 5G > A (c.969 + 5G > A) (2.84%), p.R176* (c.526C > T) (2.42%), p.Lys363Nfs*37 (c.1089delG) (2.13%), IVS11 + 1G > C (c.1199 + 1G > C) (2.07%) and p.L48S (c.143 T > C) (2.04%) were identified. The spectrum and frequency of mutations observed in Iran were closer to those observed in the Mediterranean countries. Our results are valuable in planning panel-based studies in provinces with incomplete data on PAH gene mutations. This study is a good reference for genetic counselors and physicians who advise couples in making decisions to maintain or terminate a pregnancy.
Inflammatory chemokine (C-C motif) ligand 8 inhibition ameliorates peritoneal fibrosis
FASEB J 2023 Jan;37(1):e22632.PMID:36468785DOI:10.1096/fj.202200784R.
Peritoneal fibrosis (PF) is an irreversible complication of peritoneal dialysis (PD) that leads to loss of peritoneal membrane function. We investigated PD effluent and serum levels and the tissue expression of chemokine (C-C motif) ligand 8 (CCL8) in patients with PD. Additionally, we investigated their association with PF in a mouse model. Eighty-two end-stage renal disease (ESRD) patients with PD were examined. CCL8 levels were measured via enzyme-linked immunosorbent assays in PD effluents and serum and analyzed with peritoneal transport parameters. Human peritoneal mesothelial cells (hPMCs) were obtained from the PD effluents of 20 patients. Primary cultured hPMCs were treated with recombinant (r) transforming growth factor (TGF)-β, and CCL8 expression was assessed via western blotting. As the duration of PD increased, the concentration of CCL8 in PD effluents significantly increased. Correlations between peritoneal transport parameters and dialysate CCL8 levels were observed. Western blotting analysis showed that CCL8 was upregulated via rTGF-β treatment, accompanied by increases in markers of inflammation, fibrosis, senescence, and apoptosis in hPMCs after induction of fibrosis with rTGF-β. Anti-CCL8 monoclonal antibody (mAb) treatment suppressed the rTGF-β-induced increase in all analyzed markers. Immunohistochemical analysis revealed that CCL8 along with fibrosis- and inflammation-related markers were significantly increased in the PF mouse model. Functional blockade of CCL8 using a CCR8 inhibitor (R243) abrogated peritoneal inflammation and fibrosis in vivo. In conclusion, high CCL8 levels in PD effluents may be associated with an increased risk of PD failure, and the CCL8 pathway is associated with PF. CCL8 blockade can ameliorate peritoneal inflammation and fibrosis.