Home>>Signaling Pathways>> DNA Damage/DNA Repair>> Deubiquitinase>>RA-9

RA-9 Sale

(Synonyms: (3E,5E)-3,5-双(4-硝基亚苄基)哌啶-4-酮) 目录号 : GC60317

RA-9 is a cell-permeable, potent and selective inhibitor of proteasome-associated deubiquitinating enzymes (DUBs) with favorable toxicity profile and anticancer activity. RA-9 selectively induces apoptosis in ovarian cancer cell lines.

RA-9 Chemical Structure

Cas No.:919091-63-7

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥549.00
现货
5mg
¥495.00
现货
10mg
¥855.00
现货
50mg
¥2,160.00
现货
100mg
¥3,780.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

RA-9 is a cell-permeable, potent and selective inhibitor of proteasome-associated deubiquitinating enzymes (DUBs) with favorable toxicity profile and anticancer activity. RA-9 selectively induces apoptosis in ovarian cancer cell lines.

[1] Kathleen Coughlin, et al. Clin Cancer Res. 2014 Jun 15;20(12):3174-86.

Chemical Properties

Cas No. 919091-63-7 SDF
别名 (3E,5E)-3,5-双(4-硝基亚苄基)哌啶-4-酮
Canonical SMILES O=C1/C(CNC/C1=C\C2=CC=C([N+]([O-])=O)C=C2)=C/C3=CC=C([N+]([O-])=O)C=C3
分子式 C19H15N3O5 分子量 365.34
溶解度 DMSO: 4.17 mg/mL (11.41 mM; ultrasonic and warming and heat to 80°C) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.7372 mL 13.6859 mL 27.3718 mL
5 mM 0.5474 mL 2.7372 mL 5.4744 mL
10 mM 0.2737 mL 1.3686 mL 2.7372 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

USP8 inhibitor RA-9 reduces ACTH release and cell growth in tumor corticotrophs

Endocr Relat Cancer 2021 Jun 28;28(8):573-582.PMID:34086599DOI:10.1530/ERC-21-0093.

Cushing's disease (CD) is a rare endocrine disorder caused by an adrenocorticotropic hormone (ACTH)-secreting pituitary tumor. Pasireotide is the only pituitary-targeted drug approved for adult patients. Nevertheless, many side effects are encountered and curative therapy is still challenging. Ubiquitin-specific peptidase 8 (USP8) plays a crucial role in the modulation of corticotroph cells growth and ACTH secretion. Here, we explored the anticancer potential of the USP8 inhibitor RA-9 in USP8-WT human tumor corticotroph cells and murine AtT-20 cells. Our results showed that RA-9 causes cell proliferation decrease (-24.3 ± 5.2%, P < 0.01) and cell apoptosis increase (207.4 ± 75.3%, P < 0.05) in AtT-20 cells, as observed with pasireotide. Moreover, RA-9 reduced ACTH secretion in AtT-20 cells (-34.1 ± 19.5%, P < 0.01), as well as in AtT-20 cells transfected with USP8 mutants, and in one out of two primary cultures in vitro responsive to pasireotide (-40.3 ± 6%). An RA-9 mediated decrease of pERK1/2 levels was observed in AtT-20 cells (-52.3 ± 13.4%, P < 0.001), comparable to pasireotide, and in primary cultures, regardless of their in vitro responsiveness to pasireotide. Upregulation of p27 was detected upon RA-9 treatment only, both in AtT-20 cells (167.1 ± 36.7%, P < 0.05) and in one primary culture tested (168.4%), whilst pCREB level was similarly halved in AtT-20 cells by both RA-9 and pasireotide. Altogether, our data demonstrate that RA-9 is efficient in exerting cytotoxic effects and inhibitory actions on cell proliferation and hormone secretion by modulating the expression of pERK1/2, pCREB and p27. Inhibition of USP8 might represent a novel strategy to target both USP8-WT and USP8-mutated tumors in CD patients.

Small-molecule RA-9 inhibits proteasome-associated DUBs and ovarian cancer in vitro and in vivo via exacerbating unfolded protein responses

Clin Cancer Res 2014 Jun 15;20(12):3174-86.PMID:24727327DOI:10.1158/1078-0432.CCR-13-2658.

Purpose: Ovarian cancer is the deadliest of the gynecologic malignancies. Carcinogenic progression is accompanied by upregulation of ubiquitin-dependent protein degradation machinery as a mechanism to compensate with elevated endogenous proteotoxic stress. Recent studies support the notion that deubiquitinating enzymes (DUB) are essential factors in proteolytic degradation and that their aberrant activity is linked to cancer progression and chemoresistance. Thus, DUBs are an attractive therapeutic target for ovarian cancer. Experimental design: The potency and selectivity of RA-9 inhibitor for proteasome-associated DUBs was determined in ovarian cancer cell lines and primary cells. The anticancer activity of RA-9 and its mechanism of action were evaluated in multiple cancer cell lines in vitro and in vivo in immunodeficient mice bearing an intraperitoneal ES-2 xenograft model of human ovarian cancer. Results: Here, we report the characterization of RA-9 as a small-molecule inhibitor of proteasome-associated DUBs. Treatment with RA-9 selectively induces onset of apoptosis in ovarian cancer cell lines and primary cultures derived from donors. Loss of cell viability following RA-9 exposure is associated with an unfolded protein response as mechanism to compensate for unsustainable levels of proteotoxic stress. In vivo treatment with RA-9 retards tumor growth, increases overall survival, and was well tolerated by the host. Conclusions: Our preclinical studies support further evaluation of RA-9 as an ovarian cancer therapeutic.

Dienone Compounds: Targets and Pharmacological Responses

J Med Chem 2020 Dec 24;63(24):15075-15093.PMID:33146523DOI:10.1021/acs.jmedchem.0c00812.

The biological responses to dienone compounds with a 1,5-diaryl-3-oxo-1,4-pentadienyl pharmacophore have been studied extensively. Despite their expected general thiol reactivity, these compounds display considerable degrees of tumor cell selectivity. Here we review in vitro and preclinical studies of dienone compounds including b-AP15, VLX1570, RA-9, RA-190, EF24, HO-3867, and MCB-613. A common property of these compounds is their targeting of the ubiquitin-proteasome system (UPS), known to be essential for the viability of tumor cells. Gene expression profiling experiments have shown induction of responses characteristic of UPS inhibition, and experiments using cellular reporter proteins have shown that proteasome inhibition is associated with cell death. Other mechanisms of action such as reactivation of mutant p53, stimulation of steroid receptor coactivators, and induction of protein cross-linking have also been described. Although unsuitable as biological probes due to widespread reactivity, dienone compounds are cytotoxic to apoptosis-resistant tumor cells and show activity in animal tumor models.