Home>>Signaling Pathways>> Neuroscience>> mAChR>>Rapacuronium bromide (Org 9487)

Rapacuronium bromide (Org 9487) Sale

(Synonyms: Org 9487) 目录号 : GC30971

雷帕库溴铵 (Org 9487) (Org 9487) 是一种非去极化神经肌肉阻滞剂,是毒蕈碱乙酰胆碱受体 (mAChR) 的变构调节剂。

Rapacuronium bromide (Org 9487) Chemical Structure

Cas No.:156137-99-4

规格 价格 库存 购买数量
250mg 待询 待询
500mg 待询 待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

实验参考方法

Kinase experiment:

For determination of [35S]GTPγS binding to G-proteins in membranes a final concentration of 200 pM (M1, M3 and M5 receptors) or 500 pM (M2 and M4 receptors) of [35S]GTPγS is used. Incubation medium is supplemented with 5 μM (M1, M3 and M5 receptors) or 50 μM (M2 and M4 receptors) GDP. Nonspecific binding is determined in the presence of 1 μM unlabeled GTPγS. When effects of Rapacuronium on ACh-stimulated [35S]GTPγS binding is measured Rapacuronium is added to membranes 60 min prior to ACh and [35S]GTPγS. Incubation with [35S]GTPγS is carried out for 20 min and free ligand is removed by filtration as described above. Filtration and washing with ice-cold water lasted for 9 s (wash-aspirate button time). After filtration filters are dried in vacuum for 1 h while heated at 80°C and then solid scintillator Meltilex A is melted on filters (105°C, 90 s) using a hot plate. After cooling the filters are counted using a Wallac Microbeta scintillation counter[1].

References:

[1]. Jakubík J, et al. Divergence of allosteric effects of Rapacuronium on binding and function of muscarinic receptors. BMC Pharmacol. 2009 Dec 28;9:15.
[2]. Vizi ES, et al. A new short-acting non-depolarizing muscle relaxant (SZ1677) without cardiovascular side-effects. Acta Anaesthesiol Scand. 2003 Mar;47(3):291-300.

产品描述

Rapacuronium bromide is an allosteric modulator of muscarinic acetylcholine receptor (mAChR).

Rapacuronium binds to all muscarinic receptor subtypes at physiologically relevant concentrations and displays micromolar affinity and slight selectivity towards M2 receptor. Rapacuronium exhibits complex effects on the kinetics of ACh binding and subsequent receptor activation estimated from stimulation of [35S]GTPγS binding. Rapacuronium alone concentration dependently lowers [35S]GTPγS binding to membranes with a maximal effect of approximately 25% at odd-numbered subtypes and 15% at even-numbered subtypes, with EC50 ranging from 28 μM at M2 receptors to 76 μM at M3 receptors. While the EC50 values of Rapacuronium in inhibiting [35S]GTPγS binding at individual subtypes correlated with affinities measured in binding experiments with [3H]ACh (R2 = 0.76) they are lower (4- to 12-fold) at all subtypes. Measurements of ACh-stimulated [35S]GTPγS binding in the presence of 0.1, 1 and 10 μM Rapacuronium shows differential effects of Rapacuronium on receptor activation by an orthosteric agonist at individual receptor subtypes. At even-numbered subtypes 1 μM and 10 μM Rapacuronium significantly increases ACh EC50, with lowering of EMAX at 10 μM Rapacuronium. At this subtype 0.1 and 1 μM Rapacuronium causes a significant 2-fold decrease in ACh EC50 and approximately 60% and 35% increase in EMAX, respectively. Rapacuronium at 10 μM increases ACh EC50 by about 3-fold without a significant change in EMAX. Rapacuronium (0.1 - 10 μM) has no effect on ACh efficacy at the M1 and M5 subtypes but decreases the EC50 of ACh in stimulating [35S]GTPγS binding by 1.5- and 4-fold, respectively, at concentrations of 0.1 and 1 μM. However, this effect is not evident at 10 μM Rapacuronium[1].

Time course of the neuromuscular effects of Rapacuronium following the administration of the 2×ED90 doses to rats and guinea-pigs with ED90 of 5953±199 and 187±16 µg/kg in rat and guinea pig, respectively[2].

[1]. Jakubík J, et al. Divergence of allosteric effects of Rapacuronium on binding and function of muscarinic receptors. BMC Pharmacol. 2009 Dec 28;9:15. [2]. Vizi ES, et al. A new short-acting non-depolarizing muscle relaxant (SZ1677) without cardiovascular side-effects. Acta Anaesthesiol Scand. 2003 Mar;47(3):291-300.

Chemical Properties

Cas No. 156137-99-4 SDF
别名 Org 9487
Canonical SMILES C[C@@]12[C@](CC[C@]3([H])[C@]2([H])CC[C@@]4(C)[C@@]3([H])C[C@H]([N+]5(CC=C)CCCCC5)[C@@H]4OC(CC)=O)([H])C[C@H](OC(C)=O)[C@@H](N6CCCCC6)C1.[Br-]
分子式 C37H61BrN2O4 分子量 677.8
溶解度 DMSO : ≥ 125 mg/mL (184.42 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.4754 mL 7.3768 mL 14.7536 mL
5 mM 0.2951 mL 1.4754 mL 2.9507 mL
10 mM 0.1475 mL 0.7377 mL 1.4754 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Rapacuronium (Org 9487): do we have a replacement for succinylcholine?

Rapacuronium bromide: a review of its use in anaesthetic practice

Rapacuronium bromide (rapacuronium) is an aminosteroid, nondepolarising neuromuscular blocking agent (NMBA). At the recommended dose for endotracheal intubation (1.5 mg/kg), an intravenous bolus of rapacuronium has a rapid onset (approximately 1.2 to 1.8 minutes) and short duration of action (10.2 to 16.5 minutes) in adults undergoing elective surgery. Rapacuronium 1.5 mg/kg produced clinically acceptable intubating conditions in 68 to 89% of these patients at about 1 minute after administration. The onset, extent and duration of action and clinical efficacy of an intubating dose of rapacuronium appeared to be similar in the general adult population, adult patients with renal or hepatic dysfunction, patients undergoing Caesarean section, and elderly, paediatric or obese adult patients. Onset time with rapacuronium 1.3 to 2.5 mg/kg (0.9 to 1.8 minutes) was similar to or slower than that with a 1 mg/kg dose of the depolarising NMBA suxamethonium chloride (0.8 to 1.2 minutes). Intubating conditions were clinically acceptable about I minute after administration in 86 to 100% of patients with rapacuronium 1.3 to 2.5 mg/kg compared with in 88 to 97% of patients with suxamethonium chloride 1 or 1.5 mg/kg. Spontaneous recovery was slower with rapacuronium than with suxamethonium chloride, but neostigmine 0.04 or 0.05 mg/kg administered 2 or 5 minutes after rapacuronium 1.3 or 1.5 mg/kg accelerated recovery. In the few available comparative clinical trials, rapacuronium 1.5 mg/kg appeared to have a more rapid onset of action than the nondepolarising NMBAs mivacurium chloride 0.25 mg/kg, rocuronium bromide 0.45 or 0.6 mg/kg or vecuronium bromide 0.07 mg/kg, and a shorter duration of action than rocuronium bromide 0.45 or 0.6 mg/kg or vecuronium bromide 0.07 mg/kg. Additional boluses (< or =3) of rapacuronium 0.5 or 0.55 mg/kg after an intubating bolus of 1.5 mg/kg provided continued skeletal muscle relaxation during short surgical procedures in adult patients. However, these patients may recover more slowly than those who receive a single bolus of the drug. Bronchospasm was the most common treatment-related adverse event with rapacuronium 0.3 to 3 mg/kg (3.4% of adult patients). Tachycardia, injection site reaction and hypotension were also reported in small proportions of patients (1.6, 1.1 and 0.9%). The overall incidence of drug-related adverse events was similar with rapacuronium 1.5 or 2.5 mg/kg or suxamethonium chloride 1 mg/kg (8 vs. 6%) but bronchospasm, tachycardia and injection site reaction tended to occur more often with rapacuronium.
Conclusions: At the recommended dose of 1.5 mg/kg, the nondepolarising NMBA rapacuronium has a rapid onset and short duration of action. It may provide a nondepolarising alternative to suxamethonium chloride for endotracheal intubation. Rapacuronium may be preferred over rocuronium bromide, vecuronium bromide or mivacurium chloride in this indication.

Pharmacokinetics and pharmacokinetic-dynamic relationship between rapacuronium (Org 9487) and its 3-desacetyl metabolite (Org 9488)

Rapacuronium (Org 9487) is a rapid-onset and short- to intermediate-acting muscle relaxant. Its 3-desacetyl metabolite, Org 9488, also exerts neuromuscular-blocking activity that may become apparent after prolonged maintenance of relaxation with rapacuronium. In this study, the pharmacokinetic behavior (n = 7) of this metabolite and the pharmacokinetic/pharmacodynamic (PK/PD) relationship of rapacuronium (n = 10) and Org 9488 (n = 7) were investigated in humans. Similar protocols were used for three study groups regarding the anesthetic technique, blood and urine sampling, and pharmacokinetic and PK/PD analyses. The time course of action was measured mechanomyographically using the adductor pollicis muscle. The median clearance of rapacuronium was 7.28 mL x kg(-1) x min(-1) x with an excretion fraction in the urine of 6.2%. The clearance (studied in two groups) of Org 9488 was 1.28 and 1.06 mL x kg(-1) x min(-1) with an excretion fraction in the urine of 51.9% and 53.5%, respectively. The median rate constant of transport between plasma and the biophase of rapacuronium (0.449 min(-1)) is markedly larger than that for Org 9488 (0.105 min(-1)). The modeled concentration in the biophase at 50% effect as a measure of potency is higher for rapacuronium (4.70 microg/mL) than for Org 9488 (1.83 microg/mL). The lower clearance of the metabolite will gradually prolong the time course of the neuromuscular blockade during maintenance with rapacuronium.
Implications: We investigated the concentration-time-effect relationship of the relaxant rapacuronium and the contribution of its metabolite. Clearance, rate constant of transport between plasma and the biophase, and modeled concentration in the biophase at 50% effect of rapacuronium are consistent with its rapid onset and short to intermediate duration. The lower clearance of the metabolite will gradually prolong the time course of the neuromuscular blockade during maintenance with rapacuronium.

The potency (ED50) and cardiovascular effects of rapacuronium (Org 9487) during narcotic-nitrous oxide-propofol anesthesia in neonates, infants, and children

We studied the neuromuscular blocking effects of rapacuronium (Org 9487) (dose-response curve, onset, and 50% effective dose [ED50] value), and changes in heart rate and blood pressure, as well as evidence of histamine release in neonates, infants, and children in an open-label, randomized, two-center study. Fifteen neonates, 30 infants, and 30 children were studied. Anesthesia was induced and maintained with propofol, nitrous oxide:oxygen (60:40), and fentanyl. Mechanomyographic monitoring of neuromuscular function was performed at the thumb. The potency (ED50) for neonates, infants, and children were 0.32 (95% confidence interval [CI] 0.15-0.61), 0.28 (95% CI 0.11-0.61), and 0.39 (95% CI 0.17-0.85) mg/kg, respectively. Neonates who received 0.3, 0.6, or 0.9 mg/kg Org 9487 developed a maximum T1 twitch depression of 34 +/-28%, 98 +/- 3%, and 99 +/- 2%, respectively. Time-to-peak effect (onset time) for 0.9 mg/kg Org 9487 was 57 +/- 20 s. Maximum percent T1 twitch depression (+/-SD) in infants who received 0.3, 0.6, or 0.9 mg/kg rapacuronium was 41 +/- 34%, 96 +/- 7%, and 100 +/- 1%, respectively. Time-to-peak effect for 0.9 mg/kg Org 9487 was 62 +/- 29 s. In children 0.3, 0.6, and 0.9 mg/kg rapacuronium resulted in an average percent T1 twitch suppression of 29 +/- 23, 83 +/- 11, and 90 +/- 16, respectively. Time-to-peak effect of 0.9 mg/kg Org 9487 was 96 +/- 33 s, respectively. There was no evidence of histamine release or significant changes in heart rate or blood pressure in either group at any dose. Rapacuronium is a low-potency nondepolarizing muscle relaxant with a fast onset of relaxation and minimal cardiovascular effects. Its potency (ED50) is similar in neonates (0.32 mg/kg), infants (0.28 mg/kg), and children (0.39 mg/kg). T1 suppression (90% +/- 16) is less and time to peak effect (96 +/- 33 s) is greater (0.9 mg/kg rapacuronium) in children, compared with the combined group of infants and neonates.
Implications: This study assesses the potency of rapacuronium (Org 9487) in pediatric patients. The potency of rapacuronium is similar in neonates (0.32 mg/kg), infants (0.28 mg/kg), and children (0.39 mg/kg).

Spontaneous or neostigmine-induced recovery after maintenance of neuromuscular block with Org 9487 (rapacuronium) or rocuronium following an initial dose of Org 9487

We have examined spontaneous and neostigmine-induced recovery after an initial dose of Org 9487 1.5 mg kg-1 followed by three repeat doses of Org 9487, a 30-min infusion of Org 9487 or two incremental doses of rocuronium. Mean clinical duration after incremental doses of Org 9487 0.5 mg kg-1 increased from 12.3 (SD 3.4) min to 14.0 (4.0) and 15.9 (5.9) min (P < 0.01), and after rocuronium from 14.4 (5.2) min to 19.2 (5.9) min (P < 0.01). Times for spontaneous recovery from a T1 of 25% to a TOF ratio of 0.8 after the last bolus dose of Org 9487 and after a 30-min infusion were 72.4 (16.5) and 66.1 (26.9) min compared with 36.7 (15.8) min in the group receiving reocuronium. These times were significantly reduced to 9.9 (4.5), 8.6 (6.1) and 5.7 (2.5) min, respectively, after neostigmine administration at a T1 of 25% (P < 0.05). We conclude that administration of Org 9487 by repeat bolus doses or infusion was associated with slow spontaneous recovery but neostigmine administration resulted in adequate recovery in less than 10 min.