Rapalink-1
目录号 : GC11607
第三代二价 mTOR 抑制剂 RapaLink-1 通过惰性化学接头将雷帕霉素与 MLN0128 结合。 RapaLink-1 显示出比雷帕霉素或 mTOR 激酶抑制剂 (TORKi) 更好的功效,可有效阻断癌症衍生的激活 mTOR 突变体。 RapaLink-1 可以穿过血脑屏障。 RapaLink-1 与 FKBP12 的结合导致 mTORC1 的靶向和持久抑制。 RapaLink-1 通过改善自噬在抗磷脂综合征中发挥抗血栓作用。抗癌活性。
Cas No.:1887095-82-0
Sample solution is provided at 25 µL, 10mM.
RapaLink-1 is the third-generation mTOR inhibitor exploiting the unique juxtaposition of two drug (first- and second-generation mTOR kinase inhibitors) –binding pockets to create a bivalent interaction that allows inhibition of the mutants which has resistance to the previous TORKi (mTOR kinase inhibitors).
The PIK3CA–AKT–mTOR pathway is one of the most commonly activated pathways in human cancers, which has led to the development of small-molecule inhibitors that target various nodes in the pathway. Two generation of mTOR inhibitor had been developed.
Rapalink-1 is more potent than first- and second- generation mTOR inhibitors. RapaLink-1 could more potently reduce levels of both p-4EBP1 and cell proliferation. Researches compared rapamycin, RapaLink-1, and MLN0128 in LN229 and U87MG. Both growth inhibition and arrest in G0/G1 were more potent in response to RapaLink-1, compared with rapamycin or MLN0128. RapaLink-1 shows potent anti-tumor efficacy in vivo. RapaLink-1 led to initial regression and subsequent stabilization of tumor size in a xenograft model, while tumors treated with vehicle, rapamycin, or MLN0128 grew steadily.
RapaLink-1 could durably block mTORC1. RapaLink-1 is associated with FKBP12, an abundant mTOR-interacting protein, enabling accumulation of RapaLink-1. RapaLink-1 showed better efficacy than rapamycin or TORKi, potently blocking cancer-derived, activating mutants of mTOR.
References:
[1]. Fan Q1, Aksoy O1, Wong RA1, et al, A Kinase Inhibitor Targeted to mTORC1 Drives Regression in Glioblastoma. Cancer Cell. 2017 Mar 13;31(3):424-435. doi: 10.1016/j.ccell.2017.01.014.
[2] Rodrik-Outmezguine VS1, Okaniwa M2, Yao Z1, et al, Overcoming mTOR resistance mutations with a new-generation mTOR inhibitor. Nature. 2016 Jun 9;534(7606):272-6. doi: 10.1038/nature17963. Epub 2016 May 18.
Cas No. | 1887095-82-0 | SDF | |
Canonical SMILES | O=C(NCCCCN1N=C(C2=CC=C(OC(N)=N3)C3=C2)C4=C(N)N=CN=C41)CCOCCOCCOCCOCCOCCOCCOCCOCCN5C=C(COCCO[C@@H]6CC[C@@H](C[C@H]([C@@H](OC([C@H](CCCC7)N7C(C([C@@]8(O)[C@H](C)CC[C@H](O8)C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C([C@H](OC)[C@H](O)/C(C)=C/[C@H]9C)=O)=O | ||
分子式 | C91H138N12O24 | 分子量 | 1784.14 |
溶解度 | ≥ 178.4mg/mL in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
![]() |
1 mg | 5 mg | 10 mg |
1 mM | 0.5605 mL | 2.8025 mL | 5.6049 mL |
5 mM | 0.1121 mL | 0.5605 mL | 1.121 mL |
10 mM | 0.056 mL | 0.2802 mL | 0.5605 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet