3PO
目录号 : GC15118
3PO是参与糖酵解的关键酶PFKFB3的小分子抑制剂,IC50值为1.4至24µM, Ki值为25±9μM
Cas No.:18550-98-6
Sample solution is provided at 25 µL, 10mM.
3PO is a small-molecule inhibitor of PFKFB3, a key enzyme involved in glycolysis with IC50 values ranging from 1.4 to 24µM and a Ki value of 25 ± 9μM. By inhibiting PFKFB3, 3PO reduces the levels of Fru-2,6-BP, lactate, ATP, NAD+, and NADH within cells[1]. 3PO has gained significant attention for its potential applications in cancer research and metabolic studies[2][3][4][5][6][7].
In vitro, 3PO (10µM) treated bladder cancer cells lines (5637, HT1197, HT1376, RT4, SW780, T24, TCCSUP, and UM-UC-3) for 72h reduced cell growth and also decreased lactate production and acidification of the culture medium, indicating its inhibitory effects on glycolysis[2]. 3PO (20μM) pretreatment of HUVEC for 30 min significantly reduced IKKα/β and JNK phosphorylation, thereby inhibiting inflammatory signaling induced by subsequent TNF (1ng/mL) or IL-1β (1ng/mL) stimulation[3]. 3PO (0.1–1.0µg/mL) incubated human umbilical vein endothelial cells (HUVECs) for 24, 48, or 72h reduce the ATP flow by cutting down the energy transform, thereby inhibiting tumor angiogenesis and assisting ROS to promote the early withering of tumor cells[4].
In vivo, 3PO (38-50mg/kg) injected intraperitoneally into choroidal neovascularization (CNV) mouse model amplified the antiangiogenic activity and dose dependently reduced the CNV lesion volume[5]. 3PO (150mg/kg) administered via intraperitoneal injection in mouse model after myocardial infarction (MI) once every other day for 28 days effectively reduced fibrosis and improved adverse cardiac remodeling[6]. 3PO in the cross-linked sodium lipoic acid vesicle (3PO@cLANa) (156.3mg/kg, containing 1.5mg/kg 3PO) administrated into B16F10 melanoma tumor model via intratumoral injection at days 1, 4, and 7 exerted antitumor and antimetastasis effects[7].
References:
[1] Clem B, Telang S, Clem A, et al. Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth.Mol Cancer Ther. 2008 Jan;7(1):110-20.
[2] Lea M A, Altayyar M, desBordes C. Inhibition of Growth of Bladder Cancer Cells by 3-(3-Pyridinyl)-1-(4-pyridinyl)-2-propen-1-one in Combination with Other Compounds Affecting Glucose Metabolism.Anticancer Res. 2015 Nov;35(11):5889-99.
[3] Wik J A, Peter Lundbäck P, Poulsen C L,et al. 3PO inhibits inflammatory NFκB and stress-activated kinase signaling in primary human endothelial cells independently of its target PFKFB3. PLoS One. 2020 Mar 4;15(3):e0229395.
[4] Li S Y, Ding H, Chang J H, et al. Sm/Co-Doped Silica-Based Nanozymes Reprogram Tumor Microenvironment for ATP-Inhibited Tumor Therapy.Adv Healthc Mater. 2023 Sep; 12(24):e2300652.
[5] Schoors S, Bock K D, Cantelmo A R, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis.Cell Metab. 2014 Jan 7;19(1):37-48.
[6] Yang Q, Zong X, Zhuang L F, et al. PFKFB3 Inhibitor 3PO Reduces Cardiac Remodeling after Myocardial Infarction by Regulating the TGF-β1/SMAD2/3 Pathway. Biomolecules. 2023 Jul 3;13(7):1072.
[7] Lai H J, Wu X, Tan J.et al. Regulation of tumor lactate metabolism by targeting glycolysis and mitochondrial OXPHOS for tumor metastasis inhibition. J.Industrial & Engineering Chemistry Research. 2023 June,62(27)
3PO是参与糖酵解的关键酶PFKFB3的小分子抑制剂,IC50值为1.4至24µM, Ki值为25±9μM。通过抑制PFKFB3, 3PO降低了细胞内Fru-2、6-BP、乳酸、ATP、NAD+和NADH的水平[1]。3PO在癌症研究和代谢疾病研究中的潜在应用[2][3][4][5][6][7]。
在体外,3PO(10µM)作用于膀胱癌细胞株(5637、HT1197、HT1376、RT4、SW780、T24、TCCSUP和UM-UC-3) 72h后,细胞生长减少,乳酸生成减少,培养基酸化减少,表明其对糖酵解有抑制作用[2]。3PO(20μM)预处理TNF(1ng/mL)或IL-1β (1ng/mL)刺激人脐静脉内皮细胞(HUVEC) 30min,通过降低IKKα/β和JN的磷酸化,抑制IL-1β和TNF诱导的炎症信号传导[3]。3PO(0.1-1.0µg/mL)在人脐静脉内皮细胞(HUVECs)中孵育24、48、72h,通过减少能量转化减少ATP流动,从而抑制肿瘤血管生成,协助ROS促进肿瘤细胞早期枯萎[4]。
在体内,3PO (38-50mg/kg)腹腔注射到脉络膜新生血管(CNV)小鼠模型中,可增强其抗血管生成活性,并剂量依赖性地减少CNV病变体积[5]。心肌梗死(MI)后小鼠模型腹腔注射3PO (150mg/kg),每隔一天1次,连用28天,可有效减少纤维化,改善不良心脏重构[6]。3PO在交联的硫辛酸钠囊泡中(3PO@cLANa)中(156.3mg/kg,含1.5mg/kg 3PO)于第1、4、7天通过瘤内注射给药B16F10黑色素瘤模型,可以发挥抗肿瘤和抗转移作用[7]。
Kinase experiment [1]: | |
Preparation Method | Control reactions for 3PO inhibition contained increasing amounts of 3PO without addition of PFKFB3. The enzyme kinetics module for SigmaPlot 9.0 was used to calculate the kinetic variables for PFKFB3 and 3PO inhibition (Vmax, Km, and Ki). |
Reaction Conditions | 60, 100, and 150μmol/L |
Applications | 3PO inhibited PFKFB3 activity in a dose-dependent manner, with a Ki value of 25 ± 9μM. The inhibition was found to be mixed, involving both competitive and uncompetitive mechanisms. |
Cell experiment [2]: | |
Cell lines | Human bladder cancer cell |
Preparation Method | Human bladder cancer cell lines, namely 5637, HT1197, HT1376, RT4, SW780, T24, TCCSUP and UM-UC-3 were incubated at 37˚C in RPMI-1640 medium with 5% fetal calf serum. A total of 5×103 cells were plated in 0.2ml of medium in 96-well plates. After allowing the cells to attach for 24h, the medium was changed with addition of control medium or medium containing drugs 5 or 10µM 3PO with or without presence of 1mM butyrate. Cells were incubated for a further 72h before growth determination and measurements on the medium. |
Reaction Conditions | 5 or 10µM; 72h |
Applications | 3PO exerted inhibitory effects on the growth of bladder cancer cells. 3PO treatment reversed the increased acidification of the medium and increased glucose uptake. |
Animal experiment [3]: | |
Animal models | C57BL/6 mice |
Preparation Method | Choroidal neovascularization (CNV) was induced in C57BL/6 mice by laser burn. Mice were injected intraperitoneally (i.p.) with 38–50mg/kg PFKFB3 inhibitor 3PO daily with or without treatment with anti-VEGFR2 DC101 (12.5mg/kg, i.p.). Starting from 1 day after laser burn injury. Quantify CNV lesions upon injection with fluorescein isothiocyanate (FITC)-conjugated dextran at 14 days after laser injury. |
Dosage form | 38–50mg/kg; i.p.; daily for 2 weeks |
Applications | 3PO dose dependently reduced the choroidal neovascularization (CNV) lesion volume. 3PO also caused a decrease of CNV by 67% with the combination of DC101 (12.5mg/kg, i.p.), while DC101 treatment alone caused only 38% reduction. |
References: |
Cas No. | 18550-98-6 | SDF | |
化学名 | (E)-3-(pyridin-3-yl)-1-(pyridin-4-yl)prop-2-en-1-one | ||
Canonical SMILES | O=C(C1=CC=NC=C1)/C=C/C2=CN=CC=C2 | ||
分子式 | C13H10N2O | 分子量 | 210.23 |
溶解度 | DMF: 5 mg/mL,DMSO: 25 mg/mL,DMSO:PBS (pH 7.2) (1:10): 0.09 mg/mL,Ethanol: 2 mg/mL | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
![]() |
1 mg | 5 mg | 10 mg |
1 mM | 4.7567 mL | 23.7835 mL | 47.567 mL |
5 mM | 0.9513 mL | 4.7567 mL | 9.5134 mL |
10 mM | 0.4757 mL | 2.3783 mL | 4.7567 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet