Caerulomycin A (Cerulomycin)
(Synonyms: 浅蓝霉素,Cerulomycin; Caerulomycin) 目录号 : GC30960A fungal metabolite with antifungal and immunosuppressant activities
Cas No.:21802-37-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Caerulomycin A is an fungal metabolite originally isolated from Actinoalloteichus with antifungal and immunosuppressant activites.1,2,3,4 It inhibits the growth of C. albicans, C. glabrata, and C. krusei (MICs = 0.78-1.56, 0.39-0.78, and 0.78-1.56 μg/ml, respectively).1 Caerulomycin A induces expansion of CD4+Foxp3+ regulatory T cells (Tregs) and decreases the number of Th1 and T17 cells in vitro via increased TGF-β-mediated Smad3 activity and reduces IFN-γ-induced STAT1 signaling.2 In vivo, caerulomycin A (10 mg/kg) reduces IL-6, TNF-α, and IFN-γ production, inflammation, and synovitis in a mouse model of collagen-induced arthritis. Caerulomycin A suppresses the differentiation of Th2 cells and reduces levels of IL-4, IL-5, IL-13, and IgE and eosinophil lung infiltration in a mouse model of ovalbumin-induced asthma.3 It also increases production of Tregs, reduces production of Th1, Th17, and CD8 T cells, and reduces disease severity in a mouse model of experimental autoimmune encephalomyelitis (EAE).4
1.Ambavane, V., Tokdar, P., Parab, R., et al.Caerulomycin A - An antifungal compound isolated from marine actinomycetesAdv. Microbiol.4(9)567-578(2014) 2.Gurram, R.K., Kujur, W., Maurya, S.K., et al.Caerulomycin A enhances transforming growth factor-β (TGF-β)-Smad3 protein signaling by suppressing interferon-γ (IFN-γ)-signal transducer and activator of transcription 1 (STAT1) protein signaling to expand regulatory T cells (Tregs)J. Biol. Chem.289(25)17515-17528(2014) 3.Kujur, W., Gurram, R.K., Haleem, N., et al.Caerulomycin A inhibits Th2 cell activity: A possible role in the management of asthmaSci. Rep.515396(2015) 4.Kujur, W., Gurram, R.K., Maurya, S.K., et al.Caerulomycin A suppresses the differentiation of na?ve T cells and alleviates the symptoms of experimental autoimmune encephalomyelitisAutoimmunity50(5)317-328(2017)
Cas No. | 21802-37-9 | SDF | |
别名 | 浅蓝霉素,Cerulomycin; Caerulomycin | ||
Canonical SMILES | COC1=CC(C2=NC=CC=C2)=NC(/C=N/O)=C1 | ||
分子式 | C12H11N3O2 | 分子量 | 229.23 |
溶解度 | DMSO : 150 mg/mL (654.36 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 4.3624 mL | 21.8122 mL | 43.6243 mL |
5 mM | 0.8725 mL | 4.3624 mL | 8.7249 mL |
10 mM | 0.4362 mL | 2.1812 mL | 4.3624 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Caerulomycin, a new antibiotic from Streptomyces caeruleus Baldacci. I. Production, isolation, assay, and biological properties
Biochemical and Structural Insights into the Aminotransferase CrmG in Caerulomycin Biosynthesis
Caerulomycin A (CRM A 1) belongs to a family of natural products containing a 2,2'-bipyridyl ring core structure and is currently under development as a potent novel immunosuppressive agent. Herein, we report the functional characterization, kinetic analysis, substrate specificity, and structure insights of an aminotransferase CrmG in 1 biosynthesis. The aminotransferase CrmG was confirmed to catalyze a key transamination reaction to convert an aldehyde group to an amino group in the 1 biosynthetic pathway, preferring l-glutamate and l-glutamine as the amino donor substrates. The crystal structures of CrmG in complex with the cofactor 5'-pyridoxal phosphate (PLP) or 5'-pyridoxamine phosphate (PMP) or the acceptor substrate were determined to adopt a canonical fold-type I of PLP-dependent enzymes with a unique small additional domain. The structure guided site-directed mutagenesis identified key amino acid residues for substrate binding and catalytic activities, thus providing insights into the transamination mechanism of CrmG.