Dehydrocorydaline nitrate
(Synonyms: 硝酸脱氢紫堇碱; 13-Methylpalmatine nitrate) 目录号 : GC38615Dehydrocorydaline nitrate 从 Corydalis edulis Maxim 中分离出来的,具有抗疟疾作用。Dehydrocorydaline nitrate 显示出强大的抗疟疾作用,并具低细胞毒性 (细胞生存力> 90%), P. falciparum 3D7 strain (IC50=38 nM)。
Cas No.:13005-09-9
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Dehydrocorydaline nitrate is isolated from Corydalis edulis Maxim with anti-malarial effects. Dehydrocorydaline nitrate shows strong anti-malarial effects (IC50 =38 nM), and low cytotoxicity (cell viability > 90%) using P. falciparum 3D7 strain[1].
[1]. Nonaka M, et al. Screening of a library of traditional Chinese medicines to identify anti-malarial compounds and extracts. Malar J. 2018 Jun 25;17(1):244. doi: 10.1186/s12936-018-2392-4.
Cas No. | 13005-09-9 | SDF | |
别名 | 硝酸脱氢紫堇碱; 13-Methylpalmatine nitrate | ||
Canonical SMILES | O=N([O-])=O.CC1=C(C=CC(OC)=C2OC)C2=C[N+]3=C1C4=CC(OC)=C(OC)C=C4CC3 | ||
分子式 | C22H24N2O7 | 分子量 | 428.44 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C,protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.334 mL | 11.6702 mL | 23.3405 mL |
5 mM | 0.4668 mL | 2.334 mL | 4.6681 mL |
10 mM | 0.2334 mL | 1.167 mL | 2.334 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Anti-Trypanosoma cruzi activity of Coptis rhizome extract and its constituents
Trop Med Health 2023 Mar 1;51(1):12.PMID:36859380DOI:10.1186/s41182-023-00502-2.
Background: Current therapeutic agents, including nifurtimox and benznidazole, are not sufficiently effective in the chronic phase of Trypanosoma cruzi infection and are accompanied by various side effects. In this study, 120 kinds of extracts from medicinal herbs used for Kampo formulations and 94 kinds of compounds isolated from medicinal herbs for Kampo formulations were screened for anti-T. cruzi activity in vitro and in vivo. Methods: As an experimental method, a recombinant protozoan cloned strain expressing luciferase, namely Luc2-Tulahuen, was used in the experiments. The in vitro anti-T. cruzi activity on epimastigote, trypomastigote, and amastigote forms was assessed by measuring luminescence intensity after treatment with the Kampo extracts or compounds. In addition, the cytotoxicity of compounds was tested using mouse and human feeder cell lines. The in vivo anti-T. cruzi activity was measured by a murine acute infection model using intraperitoneal injection of trypomastigotes followed by live bioluminescence imaging. Results: As a result, three protoberberine-type alkaloids, namely coptisine chloride, Dehydrocorydaline nitrate, and palmatine chloride, showed strong anti-T. cruzi activities with low cytotoxicity. The IC50 values of these compounds differed depending on the side chain, and the most effective compound, coptisine chloride, showed a significant effect in the acute infection model. Conclusions: For these reasons, coptisine chloride is a hit compound that can be a potential candidate for anti-Chagas disease drugs. In addition, it was expected that there would be room for further improvement by modifying the side chains of the basic skeleton.
Screening of a library of traditional Chinese medicines to identify anti-malarial compounds and extracts
Malar J 2018 Jun 25;17(1):244.PMID:29941026DOI:10.1186/s12936-018-2392-4.
Background: Malaria is a major infectious disease in the world. In 2015, approximately 212 million people were infected and 429,000 people were killed by this disease. Plasmodium falciparum, which causes falciparum malaria, is becoming resistant to artemisinin (ART) in Southeast Asia; therefore, new anti-malarial drugs are urgently needed. Some excellent anti-malarial drugs, such as quinine or ART, were originally obtained from natural plants. Hence, the authors screened a natural product library comprising traditional Chinese medicines (TCMs) to identify compounds/extracts with anti-malarial effects. Methods: The authors performed three assays: a malaria growth inhibition assay (GIA), a cytotoxicity assay, and a malaria stage-specific GIA. The malaria GIA revealed the anti-malarial ability and half-maximal inhibitory concentrations (IC50) of the natural products, whereas the malaria stage-specific GIA revealed the point in the malaria life cycle where the products exerted their anti-malarial effects. The toxicity of the products to the host cells was evaluated with the cytotoxicity assay. Results: Four natural compounds (berberine chloride, coptisine chloride, palmatine chloride, and Dehydrocorydaline nitrate) showed strong anti-malarial effects (IC50 < 50 nM), and low cytotoxicity (cell viability > 90%) using P. falciparum 3D7 strain. Two natural extracts (Phellodendri cortex and Coptidis rhizoma) also showed strong antiplasmodial effects (IC50 < 1 µg/ml), and low cytotoxicity (cell viability > 80%). These natural products also demonstrated anti-malarial capability during the trophozoite and schizont stages of the malaria life cycle. Conclusions: The authors identified four compounds (berberine chloride, coptisine chloride, palmatine chloride, and Dehydrocorydaline nitrate) and two extracts (Phellodendri cortex and Coptidis rhizoma) with anti-malarial activity, neither of which had previously been described. The IC50 values of the compounds were comparable to that of chloroquine and better than that of pyrimethamine. These compounds and extracts derived from TCMs thus show promise as potential future anti-malarial drugs.