Home >> Signaling Pathways >> Apoptosis

Apoptosis(凋亡)

As one of the cellular death mechanisms, apoptosis, also known as programmed cell death, can be defined as the process of a proper death of any cell under certain or necessary conditions. Apoptosis is controlled by the interactions between several molecules and responsible for the elimination of unwanted cells from the body.

Many biochemical events and a series of morphological changes occur at the early stage and increasingly continue till the end of apoptosis process. Morphological event cascade including cytoplasmic filament aggregation, nuclear condensation, cellular fragmentation, and plasma membrane blebbing finally results in the formation of apoptotic bodies. Several biochemical changes such as protein modifications/degradations, DNA and chromatin deteriorations, and synthesis of cell surface markers form morphological process during apoptosis.

Apoptosis can be stimulated by two different pathways: (1) intrinsic pathway (or mitochondria pathway) that mainly occurs via release of cytochrome c from the mitochondria and (2) extrinsic pathway when Fas death receptor is activated by a signal coming from the outside of the cell.

Different gene families such as caspases, inhibitor of apoptosis proteins, B cell lymphoma (Bcl)-2 family, tumor necrosis factor (TNF) receptor gene superfamily, or p53 gene are involved and/or collaborate in the process of apoptosis.

Caspase family comprises conserved cysteine aspartic-specific proteases, and members of caspase family are considerably crucial in the regulation of apoptosis. There are 14 different caspases in mammals, and they are basically classified as the initiators including caspase-2, -8, -9, and -10; and the effectors including caspase-3, -6, -7, and -14; and also the cytokine activators including caspase-1, -4, -5, -11, -12, and -13. In vertebrates, caspase-dependent apoptosis occurs through two main interconnected pathways which are intrinsic and extrinsic pathways. The intrinsic or mitochondrial apoptosis pathway can be activated through various cellular stresses that lead to cytochrome c release from the mitochondria and the formation of the apoptosome, comprised of APAF1, cytochrome c, ATP, and caspase-9, resulting in the activation of caspase-9. Active caspase-9 then initiates apoptosis by cleaving and thereby activating executioner caspases. The extrinsic apoptosis pathway is activated through the binding of a ligand to a death receptor, which in turn leads, with the help of the adapter proteins (FADD/TRADD), to recruitment, dimerization, and activation of caspase-8 (or 10). Active caspase-8 (or 10) then either initiates apoptosis directly by cleaving and thereby activating executioner caspase (-3, -6, -7), or activates the intrinsic apoptotic pathway through cleavage of BID to induce efficient cell death. In a heat shock-induced death, caspase-2 induces apoptosis via cleavage of Bid.

Bcl-2 family members are divided into three subfamilies including (i) pro-survival subfamily members (Bcl-2, Bcl-xl, Bcl-W, MCL1, and BFL1/A1), (ii) BH3-only subfamily members (Bad, Bim, Noxa, and Puma9), and (iii) pro-apoptotic mediator subfamily members (Bax and Bak). Following activation of the intrinsic pathway by cellular stress, pro‑apoptotic BCL‑2 homology 3 (BH3)‑only proteins inhibit the anti‑apoptotic proteins Bcl‑2, Bcl-xl, Bcl‑W and MCL1. The subsequent activation and oligomerization of the Bak and Bax result in mitochondrial outer membrane permeabilization (MOMP). This results in the release of cytochrome c and SMAC from the mitochondria. Cytochrome c forms a complex with caspase-9 and APAF1, which leads to the activation of caspase-9. Caspase-9 then activates caspase-3 and caspase-7, resulting in cell death. Inhibition of this process by anti‑apoptotic Bcl‑2 proteins occurs via sequestration of pro‑apoptotic proteins through binding to their BH3 motifs.

One of the most important ways of triggering apoptosis is mediated through death receptors (DRs), which are classified in TNF superfamily. There exist six DRs: DR1 (also called TNFR1); DR2 (also called Fas); DR3, to which VEGI binds; DR4 and DR5, to which TRAIL binds; and DR6, no ligand has yet been identified that binds to DR6. The induction of apoptosis by TNF ligands is initiated by binding to their specific DRs, such as TNFα/TNFR1, FasL /Fas (CD95, DR2), TRAIL (Apo2L)/DR4 (TRAIL-R1) or DR5 (TRAIL-R2). When TNF-α binds to TNFR1, it recruits a protein called TNFR-associated death domain (TRADD) through its death domain (DD). TRADD then recruits a protein called Fas-associated protein with death domain (FADD), which then sequentially activates caspase-8 and caspase-3, and thus apoptosis. Alternatively, TNF-α can activate mitochondria to sequentially release ROS, cytochrome c, and Bax, leading to activation of caspase-9 and caspase-3 and thus apoptosis. Some of the miRNAs can inhibit apoptosis by targeting the death-receptor pathway including miR-21, miR-24, and miR-200c.

p53 has the ability to activate intrinsic and extrinsic pathways of apoptosis by inducing transcription of several proteins like Puma, Bid, Bax, TRAIL-R2, and CD95.

Some inhibitors of apoptosis proteins (IAPs) can inhibit apoptosis indirectly (such as cIAP1/BIRC2, cIAP2/BIRC3) or inhibit caspase directly, such as XIAP/BIRC4 (inhibits caspase-3, -7, -9), and Bruce/BIRC6 (inhibits caspase-3, -6, -7, -8, -9). 

Any alterations or abnormalities occurring in apoptotic processes contribute to development of human diseases and malignancies especially cancer.

References:
1.Yağmur Kiraz, Aysun Adan, Melis Kartal Yandim, et al. Major apoptotic mechanisms and genes involved in apoptosis[J]. Tumor Biology, 2016, 37(7):8471.
2.Aggarwal B B, Gupta S C, Kim J H. Historical perspectives on tumor necrosis factor and its superfamily: 25 years later, a golden journey.[J]. Blood, 2012, 119(3):651.
3.Ashkenazi A, Fairbrother W J, Leverson J D, et al. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors[J]. Nature Reviews Drug Discovery, 2017.
4.McIlwain D R, Berger T, Mak T W. Caspase functions in cell death and disease[J]. Cold Spring Harbor perspectives in biology, 2013, 5(4): a008656.
5.Ola M S, Nawaz M, Ahsan H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis[J]. Molecular and cellular biochemistry, 2011, 351(1-2): 41-58.

Products for  Apoptosis

  1. Cat.No. 产品名称 Information
  2. GC73918 BAY 249716 BAY 249716稳定所有三种p53蛋白变体。
  3. GC73900 HA-9104 HA-9104是一种有效的选择性抑制剂,通过几乎靶向UBE2F的V30口袋来抑制cullin-5 nedylation。
  4. GC73893 BLU-222 BLU-222是一种口服活性高选择性CDK2抑制剂。
  5. GC73881 PRO-6E PRO-6E是一种基于小脑配体的口服活性PROTAC,在MKN-45细胞中,在1 μM时可诱导MET降解,最大降解率为81.9%。
  6. GC73868 WD6305 TFA WD6305 TFA是一种有效的mettl3靶向PROTAC降解剂。
  7. GC73823 MMs02943764 MMs02943764是一种具有抗癌活性的1,2,4-三唑衍生物。
  8. GC73822 GNE-900 GNE-900是一种ATP竞争性、选择性和口服活性的ChK1抑制剂,ChKl和ChK2的IC50分别为0.0011和1.5µM。
  9. GC73813 IOX5 IOX5是一种选择性脯氨酸羟化酶(PHD)抑制剂。
  10. GC73808 Glutor Glutor是一种选择性GLUT 1/2/3抑制剂,可以抑制葡萄糖摄取。
  11. GC73795 T-1-PMPA T-1-PMPA是一种具有凋亡特性的强效EGFR抑制剂。
  12. GC73774 YCH2823 YCH2823是USP7的抑制剂(IC50 = 49.6 nM;Kd = 0.117 μM)。
  13. GC73773 PLK1/BRD4-IN-5 PLK1/BRD4-IN-5(化合物SC10)是一种口服活性PLK1和BRD4抑制剂,IC50值分别为0.3 nM和60.8 nM。
  14. GC73767 PKM2-IN-6 PKM2-IN-6(化合物7d)是一种强效的口服活性PKM2抑制剂,IC50值为23nM。
  15. GC73760 Trilexium

    TRX-E-009-1

    Trilexium (TRX-E-009-1)是与TRX-E-002-1结构相关的第三代苯并吡喃。
  16. GC73744 JAB-2485 JAB-2485是一种有效的选择性极光激酶a (AURKA)抑制剂,IC50为0.33 nM。
  17. GC73740 DCZ5418 DCZ5418是TRIP13的抑制剂。
  18. GC73725 RIPK1-IN-17 RIPK1-IN-17(化合物10)是RIPK1和RIPK3抑制剂。
  19. GC73719 BAY 1892005 BAY 1892005是p53蛋白的调节剂,作用于p53凝聚体而不引起p53突变体的再激活。
  20. GC73697 STM3006 STM3006是一种高效、选择性和口服活性的METTL3抑制剂(IC50:5nM)。
  21. GC73688 Hydroxy-PP-Me Hydroxy-PP-Me是一种强效且特异的CBR1抑制剂,IC50为759nM。droxy PP-Me抑制血清戒断诱导的细胞凋亡。
  22. GC73678 RMC-4998 RMC-4998是一种口服活性抑制剂,靶向KRASG12C突变体的活性或gtp结合状态。
  23. GC73643 NBI-961 NBI-961是一种有效的NEK2抑制剂,可抑制蛋白酶体降解。
  24. GC73642 ALK-IN-26 ALK-IN-26是ALK抑制剂,对ALK酪氨酸激酶的IC50值为7.0 μM。
  25. GC73634 Cu(II)-Elesclomol Cu(II)-Elesclomol是埃司克洛莫尔的Cu2+络合物。
  26. GC73632 NSC 48160 NSC 48160抑制癌症细胞的生长,CPFAC-1和BxPC-3的IC50分别为84.3μM和94.5μM。
  27. GC73631 FPR1 antagonist 1 FPR1 antagonist 1(化合物24a)是甲酰肽受体1(FPR1)拮抗剂,IC50为25nM。
  28. GC73630 ZZM-1220 ZZM-1220是一种组蛋白赖氨酸金属转移酶G9a/GLP共价抑制剂,IC50分别为458 nM和924 nM。
  29. GC73629 FB49 FB49是一种高选择性的bcl -2相关的无氧基因3 (BAG3)抑制剂,Ki为45 μM。
  30. GC73627 HDAC/JAK/BRD4-IN-1 HDAC/JAK/BRD4-IN-1(化合物25ap)是一种强效的HDAC/JAK/BRD4三重抑制剂。
  31. GC73619 M190S M190S是一种新型小分子,在体外和体内保护细胞免受线粒体依赖性凋亡。
  32. GC73604 MeOIstPyrd MeOIstPyrd是一种抗皮肤癌症剂。
  33. GC73601 UCM-1336 UCM-1336是一种有效的ICMT抑制剂,IC50为2μM。
  34. GC73599 TH9619 TH9619是MTHFD1和MTHFD2中去磷酸根酶和环磷酸根酶活性的有效抑制剂,IC50值为47nM,并选择性杀死癌症细胞。
  35. GC73594 KH16 KH16是一种有效的低纳摩尔HDAC抑制剂。
  36. GC73585 (Rac)-M826 (Rac)-M826是M826的外消旋体。
  37. GC73579 DDO-2728 DDO-2728(化合物19)是一种选择性AlkB同源物5(ALKBH5)抑制剂,IC50为2.97μM。
  38. GC73572 PP5-IN-1 PP5-IN-1(化合物P053)是一种丝氨酸/苏氨酸蛋白磷酸酶-5 (PP5)的竞争性抑制剂,结合其催化结构域并导致肾癌细胞凋亡。
  39. GC73571 Tubulin polymerization-IN-56 Tubulin polymerization-IN-56吲唑衍生物是一种强效的微管蛋白聚合抑制剂,通过与秋水仙素位点相互作用,导致细胞周期阻滞和细胞凋亡。
  40. GC73569 MY-1076 MY-1076是YAP的抑制剂。
  41. GC73567 Os30 Os30是一种强效的第四代EGFR抑制剂,是一种有效的EGFRC797S-TK抑制剂,对EGFRDel19/T790M/C797S TK和EGFRL858R/T790M/C797S TK的IC50值分别为18 nM和113 nM。
  42. GC73561 YS-363 YS-363是一种强效、选择性和口服活性的EGFR抑制剂,野生型和L858R突变型EGFR的IC50分别为0.96 nM和0.67 nM。
  43. GC73555 PI3Kδ-IN-16 PI3Kδ-IN-16是PI3Kδ的强效选择性抑制剂。
  44. GC73549 LSD1-IN-27 LSD1-IN-27(化合物5ac)是LSD1抑制剂(IC50:13nM)。
  45. GC73546 PD-L1-IN-3 PD-L1-IN-3 (Compound 4a)是一种靶向PD-1/PD-L1的化合物,其抑制PD-L1和Jurkat T细胞的IC50值和EC50值分别为4.97nM和2.70 μM。
  46. GC73543 FC-116 FC-116是一种有效抑制小鼠肿瘤生长的微管蛋白抑制剂。
  47. GC73541 PRMT5-IN-31 PRMT5-IN-31(化合物3m)是一种选择性PRMT5抑制剂(IC50: 0.31 μM)。
  48. GC73501 Wu-5 Wu-5是一种USP10抑制剂,可以抑制FLT3和AMPK通路,诱导FLT3-ITD降解并诱导细胞凋亡。
  49. GC73491 RapaBlock

    ZZY05-092

    RapaBlock是一种强效、非免疫抑制和脑不可渗透的FKBP12配体。
  50. GC73476 MYC-RIBOTAC MYC-RIBOTAC是一个靶向MYC内部核糖体进入位点(IRES)的核糖核酸酶嵌合体(RIBOTAC)。
  51. GC73469 Cereblon inhibitor 2 Cereblon inhibitor 2(化合物8)是一种Cereblon抑制剂,在实体肿瘤研究中非常有用,尤其是乳腺癌。

Items 101 to 150 of 2740 total

per page
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

Set Descending Direction