Resolvin D2
(Synonyms: 7(S),16(R),17(S)-Resolvin D2) 目录号 : GC44816A product of the action of 15- and 5-LO on DHA
Cas No.:810668-37-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Resolvins are a family of potent lipid mediators derived from both eicosapentaenoic acid and docosahexaenoic acid .[1] In addition to being anti-inflammatory, resolvins promote the resolution of the inflammatory response back to a non-inflamed state. [2] Resolvin D2 (RvD2) is produced physiologically from the sequential oxygenation of DHA by 15- and 5-lipoxygenase and functions to dampen excessive neutrophil trafficking to sites of inflammation. [3] It reduces zymosan-stimulated PMN infiltration by 70% at doses as low as 10 pg per mouse and significantly reduces PAF-stimulated leukocyte adherence and emigration at 1 nM. Also, by stimulating nitric oxide production, RvD2 dose dependently decreases leukocyte-endothelial interactions. In a mouse model of sepsis, RvD2 reduces leukocyte and PMN infiltration, decreases production of pro-inflammatory cytokines, and promotes phagocyte-mediated bacterial clearance. Analytical and biological comparisons of synthetic RvD2 with endogenously derived RvD2 have confirmed its identity as matching the natural product. [4]
Reference:
[1]. Hong, S., Gronert, K., Devchand, P.R., et al. Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J. Biol. Chem. 278(17), 14677-14687 (2003).
[2]. Ariel, A., and Serhan, C.N. Resolvins and protectins in the termination program of acute inflammation. TRENDS in Immunology 28(4), 176-183 (2007).
[3]. Spite, M., Norling, L.V., Summers, L., et al. Resolvin D2 is a potent regulator of leukocytes and controls microbial sepsis. Nature 461(7268), 1287-1291 (2009).
[4]. Serhan, C. . (2007).
Cas No. | 810668-37-2 | SDF | |
别名 | 7(S),16(R),17(S)-Resolvin D2 | ||
化学名 | 7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic acid | ||
Canonical SMILES | CC/C=C\C[C@H](O)[C@H](O)/C=C/C=C/C=C\C=C\[C@@H](O)C/C=C\CCC(O)=O | ||
分子式 | C22H32O5 | 分子量 | 376.5 |
溶解度 | 50 mg/ml in DMF, 50 mg/ml Ethanol | 储存条件 | Store at -80°C,protect from light |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.656 mL | 13.2802 mL | 26.5604 mL |
5 mM | 0.5312 mL | 2.656 mL | 5.3121 mL |
10 mM | 0.2656 mL | 1.328 mL | 2.656 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Resolvin D2 attenuates chronic pain-induced depression-like behavior in mice
Neuropsychopharmacol Rep 2021 Sep;41(3):426-429.PMID:34291613DOI:10.1002/npr2.12198.
Aim: We previously demonstrated that intracerebroventricular injection of Resolvin D2 (RvD2), a bioactive lipid mediator derived from docosahexaenoic acid, ameliorated depression-like behavior in lipopolysaccharide-induced and chronic mild stress-induced mouse models of depression. In the present study, we examined the antidepressant effect of RvD2 on chronic pain-induced depression-like behavior. Methods: To prepare the neuropathic pain model, mice were subjected to surgery for unilateral spared nerve injury. Two weeks after surgery, the antidepressant effect of RvD2 was examined using the tail suspension test. Results: Chronic pain significantly increased immobility time, and this depression-like behavior was attenuated by intracerebroventricular injection of RvD2 (10 ng). No effect of RvD2 on the locomotor activity was observed. Conclusion: RvD2 produces an antidepressant effect in a murine model of chronic pain-induced depression and may be a promising lead for the development of novel antidepressants.
Resolvin D2 suppresses NLRP3 inflammasome by promoting autophagy in macrophages
Exp Ther Med 2021 Nov;22(5):1222.PMID:34603519DOI:10.3892/etm.2021.10656.
Inflammasome, a multiprotein complex that regulates interleukin (IL)-1β secretion and pyroptosis, participates in numerous inflammatory diseases, including sepsis, atherosclerosis and type-2 diabetes. Investigating the inflammasome regulation is therefore crucial to understand the inflammasome activation and develop treatment for the related diseases. In addition, it remains unknown how the inflammasome is naturally suppressed during the inflammatory process. The present study aimed to investigate the role of Resolvin D2 (RvD2), an innate suppressor of inflammation produced from essential ω3-polyunsaturated fatty acids, in the activation of the inflammasome via in vitro and in vivo experiments. The effects of RvD2 on the cytokine production of inflammasome-related peritonitis were determined, and the NLRP3 inflammasome activation was investigated in the presence of RvD2. Moreover, the potential mechanisms underlying RvD2 in NLRP3 inflammasome regulation through autophagy and proteasome were investigated. The results of the present study demonstrated that RvD2 suppressed inflammasome-mediated peritonitis in vivo and regulated the NLR family pyrin domain containing 3 (NLRP3) inflammasome, but not in absent in melanoma 2 (AIM2), NLR family CARD domain containing 4 (NLRC4) inflammasomes. Mechanistically, RvD2 was found to promote the degradation of NLRP3 through autophagy, and the inhibition of autophagy could reverse the RvD2-mediated suppression of NLRP3 inflammasome in vitro and partially reverse the inflammasome-mediated peritonitis in vivo. In summary, the present study reported the negative regulation of NLRP3 inflammasome activation by RvD2. The findings from this study may extend the knowledge of the innate regulation of inflammasome and highlight a possible target for inflammasome-related diseases.
Resolvin D2 induces anti-microbial mechanisms in a model of infectious peritonitis and secondary lung infection
Front Immunol 2022 Dec 1;13:1011944.PMID:36532055DOI:10.3389/fimmu.2022.1011944.
In severe bacterial infections, there is a pro-inflammatory response to promote bacterial clearance but this response can cause tissue injury. Later, the immune system becomes dysregulated and the host is unable to clear a secondary or a pre-existing infection. Specialized Pro-resolving Mediators (SPMs) such as Resolvin D2 (RvD2) have been shown to be beneficial for inflammation/infection resolution in animal models of sepsis but in vivo mechanisms by which RvD2 may promote bacterial clearance and/or attenuate deleterious effects of a secondary infection have not been fully established. In this study, we used the 2-hit model of cecal ligation and puncture (CLP) induced infectious peritonitis and secondary lung infection with Pseudomonas aeruginosa to find possible antimicrobial and immunomodulatory mechanisms of RvD2. We show that RvD2 given as late as 48h after CLP surgery reduced blood bacterial load without altering plasma cytokines compared to mice given saline vehicle. RvD2 increased splenic neutrophil accumulation as well as average reactive oxygen species (ROS) production. There was also an increase in an immature leukocyte population the myeloid derived suppressor cells (MDSCs) in the spleen of RvD2 treated mice. RvD2 reduced lung lavage bacterial load 24h after P. aeruginosa administration and significantly decreased lung lavage levels of IL-23, a cytokine essential in the Th-17 inflammatory response. In addition, we show that RvD2 increased the number of non-inflammatory alveolar macrophages after P. aeruginosa administration compared to saline treated mice. The study uncovered an antimicrobial mechanism of RvD2 where RvD2 increases mature neutrophil and MDSC accumulation into the spleen to promote blood bacterial clearance. The study showed that in this 2-hit model, RvD2 promotes lung bacterial clearance, increased non-inflammatory alveolar macrophage number and inhibits an adaptive immune pathway providing evidence of its resolution mechanism in secondary pulmonary infection.
Resolvin D2 promotes host defense in a 2 - hit model of sepsis with secondary lung infection
Prostaglandins Other Lipid Mediat 2022 Apr;159:106617.PMID:35007703DOI:10.1016/j.prostaglandins.2022.106617.
In the development of sepsis, there is early, massive inflammation which can lead to multiple organ failure. Later there is an immunosuppressed phase where the host is susceptible to secondary infections or is unable to clear existing infection. Specialized Pro-resolving Mediators (SPMs) are endogenously produced lipids which resolve infection by decreasing bacteria load and reducing systemic inflammatory response. There has been little work studying if SPMs given late, can promote host defense. We examined if an SPM, Resolvin D2 (RvD2) could promote host defense in a 2-hit mouse model of cecal ligation and puncture (CLP) sepsis and secondary Pseudomonas aeruginosa lung infection. RvD2 given 48 h after mild CLP (1st hit), increased gene expression of Toll-like receptor-2 (TLR-2) and alveolar macrophage/monocyte phagocytic ability compared to CLP mice given saline vehicle. In this model, RvD2 did not affect plasma IL-6 or IL-10. These effects induced by RvD2, lowered lung bacterial load and decreased mortality after the secondary infection of Pseudomonas aeruginosa (2nd hit). Splenic T-cell numbers were also increased in RvD2 treated mice compared to saline vehicle treated animals. The results suggest that RvD2 promoted mechanisms of host defense in a 2-hit model sepsis and secondary lung infection.
Resolvin D1 and D2 Reverse Lipopolysaccharide-Induced Depression-Like Behaviors Through the mTORC1 Signaling Pathway
Int J Neuropsychopharmacol 2017 Jul 1;20(7):575-584.PMID:28419244DOI:10.1093/ijnp/pyx023.
Background: Resolvin D1 and D2 are bioactive lipid mediators that are generated from docosahexaenoic acid. Although recent preclinical studies suggest that these compounds have antidepressant effects, their mechanisms of action remain unclear. Methods: We investigated mechanisms underlying the antidepressant effects of resolvin D1 and Resolvin D2 in lipopolysaccharide (0.8 mg/kg, i.p.)-induced depression model mice using a tail suspension test. Results: I.c.v. infusion of resolvin D1 (10 ng) and Resolvin D2 (10 ng) produced antidepressant effects; these effects were significantly blocked by a resolvin D1 receptor antagonist WRW4 (10 µg, i.c.v.) and a Resolvin D2 receptor antagonist O-1918 (10 µg, i.c.v.), respectively. The mammalian target of rapamycin complex 1 inhibitor rapamycin (10 mg/kg, i.p.) and a mitogen-activated protein kinase kinase inhibitor U0126 (5 µg, i.c.v.) significantly blocked the antidepressant effects of resolvin D1 and Resolvin D2. An AMPA receptor antagonist NBQX (10 mg/kg, i.p.) and a phosphoinositide 3-kinase inhibitor LY294002 (3 µg, i.c.v.) blocked the antidepressant effects of resolvin D1 significantly, but not of Resolvin D2. Bilateral infusions of resolvin D1 (0.3 ng/side) or Resolvin D2 (0.3 ng/side) into the medial prefrontal cortex or dentate gyrus of the hippocampus produced antidepressant effects. Conclusions: These findings demonstrate that resolvin D1 and Resolvin D2 produce antidepressant effects via the mammalian target of rapamycin complex 1 signaling pathway, and that the medial prefrontal cortex and dentate gyrus are important brain regions for these antidepressant effects. These compounds and their receptors may be promising targets for the development of novel rapid-acting antidepressants, like ketamine and scopolamine.