Rhodamine 800
(Synonyms: 罗丹明800) 目录号 : GC30591Rhodamine 800是一种细胞渗透性阳离子荧光探针,特异性识别线粒体膜电位,最大激发光/发射光为682/704nm。
Cas No.:137993-41-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
、本方案仅提供一个指导,应根据您的具体需要进行修改。
1、制备Rhodamine 800染色液
(1)染料储存液:使用DMSO将Rhodamine 800溶解成1-10mM的储存液。配置好的储存液分装后于-20或-80℃避光保存。
(2)染料工作液:用合适的缓冲液(如:无血清培养基,HBSS或PBS)稀释储存液,配制浓度为1-20μM的Rhodamine 800工作液。
注意: 请根据实际情况调整及优化工作液浓度,现用现配。
2、细胞悬浮染色(以6 孔板为例)
(1)悬浮细胞经1000g离心3-5min。弃去上清液,使用PBS清洗两次,每次5分钟。
(2)贴壁细胞使用PBS清洗两次,加入胰酶消化细胞,消化完成后经1000g离心3-5min。
(3)加入1mL染料工作液重悬细胞,室温避光孵育5-30min分钟,不同细胞最佳培养时间不同。
(4)孵育结束后,经1000g离心5分钟,去除上清液,加入PBS清洗2-3次,每次5分钟。
(5)使用无血清细胞培养基或PBS重悬细胞,通过荧光显微镜或流式细胞技术进行观察。
3、细胞贴壁染色
(1)在无菌盖玻片上培养贴壁细胞。
(2)从培养基中移走盖玻片,吸出过量的培养基,将盖玻片放在潮湿的环境中。
(3)从盖玻片的一角加入100uL染料工作液,轻轻晃动使染料均匀覆盖所有细胞,室温避光孵育5-30min分钟。
(4)吸弃染料工作液,使用培养液清洗盖玻片2~3次,每次5分钟。
4、显微镜检测:Rhodamine 800的最大激发光/发射光为683/696nm。
注意事项:
1)荧光染料均存在淬灭问题,请尽量注意避光,以减缓荧光淬灭。
2)为了您的安全和健康,请穿实验服并戴一次性手套操作。
References:
[1]. Michael B Schultz,et. Molecular and Cellular Characterization of SIRT1 Allosteric Activators. 2019:1983:133-149. doi: 10.1007/978-1-4939-9434-2_8.
Rhodamine 800 is a cell-permeable cationic red fluorescent probe that specifically identifies mitochondrial membrane potential. The maximum excitation/emission light is 682/704nm. Rhodamine dyes can selectively label mitochondria and measure mitochondrial membrane potential, and are often used to evaluate mitochondrial function through live-cell fluorescence microscopy or flow cytometry. Dyes incorporated into cells are preferentially retained in mitochondria, producing bright fluorescence with fluorescence intensity proportional to mitochondrial membrane potential. Loss of mitochondrial integrity or excessive opening of the mitochondrial permeability transition pore can cause the probe to leak out of the mitochondria, resulting in reduced fluorescence[1]. Rhodamine dye has low toxicity to cells at a certain concentration, so it is often used to detect mitochondria in animal cells, plant cells, and microorganisms[2].
References:
[1]. Cristiano Ferlini, Giovanni Scambia. Assay for apoptosis using the mitochondrial probes, Rhodamine123 and 10-N-nonyl acridine orange. 2007;2(12):3111-4. doi: 10.1038/nprot.2007.397.
[2]. Emaus, R. K., Grunwald, R., & Lemasters, J. J. (1986). Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 850(3), 436–448.
Rhodamine 800是一种细胞渗透性阳离子红色荧光探针,特异性识别线粒体膜电位,最大激发光/发射光为682/704nm。罗丹明染料能够选择性标记线粒体以及测定线粒体膜电位,常被用于通过活细胞荧光显微镜或流式细胞术评估线粒体功能。掺入细胞的染料优先保留在线粒体中,产生明亮的荧光,并且荧光强度与线粒体膜电位成比例。线粒体完整性的丧失或线粒体通透性转换孔的过渡开放会导致探针从线粒体中渗出,从而导致荧光减弱[1]。在一定浓度下,罗丹明染料对细胞的毒性较低,因此常用于检测动物细胞、植物细胞和微生物中的线粒体[2]。
Cas No. | 137993-41-0 | SDF | |
别名 | 罗丹明800 | ||
Canonical SMILES | N#CC(C1=CC2=C3N(CCC2)CCCC3=C1[O+]=C45)=C4C=C6CCCN7CCCC5=C76.O=Cl(=O)([O-])=O | ||
分子式 | C26H26ClN3O5 | 分子量 | 495.95 |
溶解度 | DMSO: 83.33 mg/mL (168.02 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.0163 mL | 10.0817 mL | 20.1633 mL |
5 mM | 0.4033 mL | 2.0163 mL | 4.0327 mL |
10 mM | 0.2016 mL | 1.0082 mL | 2.0163 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Excitation of rhodamine 800 in aqueous media: a theoretical investigation
The main goal of this work was to obtain a calculated absorption spectrum of rhodamine 800 in an aqueous solution, which most accurately reproduces the experimental one. To achieve this result, I used the hybrid functionals supported by Gaussian 16 software package. In this case, the basis set (6-31++G(d,p)) and the solvent model (IEFPCM) were not varied. The B3PW91 functional gave the best agreement with the experimental absorption spectrum of the dye in an aqueous medium. B3P86, B971, B972, B98, X3LYP, APF, HSE06, and N12SX functionals also give good absorption energy coincidence. The B3PW91/6-31++G(d,p)/IEFPCM theory level chosen in this way made it possible to calculate the various characteristics of rhodamine 800 in the ground and excited states. An important result of this work was the establishment of the vibronic nature of the short-wavelength smaller maximum of the absorption spectrum. The influence of the strong H-bond of the exocyclic nitrogen atom with the water molecule on the dye excitation was analyzed.
Rhodamine 800 as a probe of energization of cells and tissues in the near-infrared region: a study with isolated rat liver mitochondria and hepatocytes
To examine the feasibility of optical monitoring of cellular energy states with tissue-transparent near-infrared (NIR) light, the absorption and fluorescence characteristics of Rhodamine 800 in isolated rat liver mitochondria and hepatocytes were investigated. When the dye was incubated with isolated mitochondria, a large red shift of the absorption spectra and quenching of the fluorescence intensity were observed. The absorbance difference at 730 minus 685 nm, or at 730 minus 800 nm, and the fluorescence intensity measured at 692 nm varied linearly with the mitochondrial membrane potential. The spectral changes observed could be explained in terms of the potential-dependent uptake of the dye from the buffer solution into the mitochondrial matrix. The respiration control ratio and oxygen consumption rate were not affected by the addition of Rhodamine 800 at concentrations lower than 5 microM, which was the concentration range mostly employed throughout the present study. In a suspension of hepatocytes, the red shift and fluorescence quenching of Rhodamine 800 characteristic of energized mitochondria were also observed, and these changed to those of the buffer solution with the addition of an uncoupler under normoxia. At the early stage of anoxia, within about 5 min, when cytochrome oxidase was completely reduced, hepatocytes were concluded to be in the fully energized state, since the optical characteristics of Rhodamine 800 were the same as those of energized mitochondria. On the basis of these in vitro data, Rhodamine 800 is concluded to be a possible NIR-active contrast agent, that can be used to monitor the energy states of living tissues, in addition to the tissue oxygenation states, by the use of near-infrared spectrophotometry (NIRS) without harmful effects.
Rhodamine 800 as a near-infrared fluorescent deposition flow tracer in rodent hearts
We investigated the use of a near-infrared (NIR) fluorescent dye, Rhodamine 800 (Rhod800, λ(exc) = 693 nm, λ(em) > 720 nm) as a flow-dependent molecular tracer for NIR spectroscopy and high-resolution cardiac imaging. Rhod800 accumulates in isolated mitochondria in proportion to the mitochondrial membrane potential (ΔΨ). However, in the intact myocardium, Rhod800 binding is ΔΨ-independent. Rat hearts were perfused in a Langendorff mode with Krebs-Henseleit buffer containing 45-nM Rhod800 at normal (100%), increased (150%), or reduced (50%) baseline coronary flow (CF) per gram, for 30 to 60 min. In a different group of hearts, the left anterior descending artery (LAD) was occluded prior to Rhod800 infusion to create a flow deficit area. Rhod800 deposition was analyzed by: 1. absorbance spectroscopy kinetics in the Rhod800-perfused hearts, 2. Rhod800 absorbance and fluorescence imaging in the short-axis heart slices, and 3. dynamic epicardial/subepicardial fluorescence imaging of Rhod800 in KCl-arrested hearts, with a spatial resolution of ? 200 μm. Rhod800 deposition was proportional to the perfusate volume (CF and perfusion time) and there was no Rhod800 loss during the washout period. In the LAD-ligated hearts, Rhod800 fluorescence was missing from the no-flow, LAD-dependent endocardial and epicardial/subepicardial area. We concluded that Rhod800 can be used as a deposition flow tracer for dynamic cardiac imaging.
Rhodamine 6G and 800 J-heteroaggregates with enhanced acceptor luminescence (HEAL) adsorbed in transparent SiO2 GLAD thin films
An enhanced fluorescent emission in the near infrared is observed when the Rhodamine 800 (Rh800) and 6G (Rh6G) dyes are coadsorbed in porous SiO(2) optical thin films prepared by glancing angle deposition (GLAD). This unusual behavior is not observed in solution and it has been ascribed to the formation of a new type of J-heteroaggregates with enhanced acceptor luminescence (HEAL). This article describes in detail and explains the main features of this new phenomenology previously referred in a short communication [J. R. Sánchez-Valencia, J. Toudert, L. González-García, A. R. González-Elipe and A. Barranco, Chem. Commun., 2010, 46, 4372-4374]. It is found that the efficiency and characteristics of the energy transfer process are dependent on the Rh6G/Rh800 concentration ratio which can be easily controlled by varying the pH of the solutions used for the infiltration of the molecules or by thermal treatments. A simple model has been proposed to account for the observed enhanced acceptor luminescence in which the heteroaggregates order themselves according to a "head to tail" configuration due to the geometrical constrains imposed by the SiO(2) porous matrix thin film. The thermal stability of the dye molecules within the films and basic optical (absorption and fluorescence) principles of the HEAL process are also described.
Rhodamine dye transfer from hydrogel to nanospheres for the chemical detection of potassium ions
Smart hydrogels incorporating various functional nanomaterials are becoming popular tools for chemical sensing. Here, ion-exchange nanospheres composed of the block copolymer Pluronic F-127 played the role of a scavenger for a signal transducer dye (Rhodamine 800) in a three-phase based optical detection system for potassium ions. Rhodamine 800, a positively charged dye, was incorporated into a hydrogel together with the potassium ionophore valinomycin and an ion-exchanger (Na+R-). The concentration of Rhodamine 800 in the aqueous sample was kept low by the nanospheres containing Na+R-. Consequently, the detection limit (0.3 μM) of the three-phase based system was shifted 2 orders of magnitude lower compared with those of previously reported two-phase based sensing systems. The concept of controlling the dye transfer among the three phases provided a new train of thought for the design of ionophore-based chemical sensors.