Ribocil-C
目录号 : GC32158Ribocil-C是高度选择性的细菌核黄素核糖开关(bacterialriboflavinriboswitches)抑制剂。
Cas No.:1825355-56-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >99.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Animal experiment: | DBA/2J mice are infected by intraperitoneal injectionwith Escherichia coli strain MB5746 (5×104 CFU per mouse) and treated by subcutaneous injection with Ribocil-C (30, 60, 120 mg/kg) or ciprofloxacin (0.5mg/kg) three times over a 24 h infection period. Spleens are aseptically collected from five mice per group and the reduction of log[CFU per g spleen tissue] is calculated on the basis of bacterial burden in spleens of the vehicle-treated (10% DMSO) control group[2]. |
References: [1]. Wang H, et al. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch DisruptRiboflavin Homeostasis in an Infectious Setting. Cell Chem Biol. 2017 May 18;24(5):576-588. |
Ribocil-C is a highly selective inhibitor of bacterial riboflavin riboswitches.
Ribocil-C is a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Ribocil-C specifically inhibits dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for Staphylococcus aureus growth and pathogenesis[1]. Ribocil-C is a small-molecule synthetic mimic of FMN that binds the FMN riboswitch of multiple GN bacteria, including Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii, to inhibit ribB expression, RF synthesis, and consequently arrest bacterial growth[1][2].
Higher dose Ribocil-C treatment groups (60 and 120 mg kg21 ribocil-C) demonstrate a dose-dependent reduction in bacterial burden of 1.87 and 3.29 log10[CFU per g spleen] reduction respectively versus shamtreated mice, without mortality or gross effects of toxicity observed[2].
[1]. Wang H, et al. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch DisruptRiboflavin Homeostasis in an Infectious Setting. Cell Chem Biol. 2017 May 18;24(5):576-588. [2]. Howe JA, et al. Selective small-molecule inhibition of an RNA structural element. Nature. 2015 Oct 29;526(7575):672-7.
Cas No. | 1825355-56-3 | SDF | |
Canonical SMILES | O=C1C=C(C2=CC=CS2)NC([C@H]3CCCN(CC4=CN(C5=NC=CC=N5)C=N4)C3)=N1 | ||
分子式 | C21H21N7OS | 分子量 | 419.5 |
溶解度 | DMSO : ≥ 24.6 mg/mL (58.64 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.3838 mL | 11.919 mL | 23.8379 mL |
5 mM | 0.4768 mL | 2.3838 mL | 4.7676 mL |
10 mM | 0.2384 mL | 1.1919 mL | 2.3838 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Two Are Better Than One: Dual Targeting of Riboswitches by Metabolite Analogs
Cell Chem Biol 2017 May 18;24(5):535-537.PMID:28525764DOI:10.1016/j.chembiol.2017.05.004.
In this issue of Cell Chemical Biology, Wang et al. (2017) examine the effect of the novel synthetic molecule Ribocil-C and the natural compound roseoflavin in Gram-positive pathogens. In methicillin-resistant Staphylococcus aureus (MRSA), Ribocil-C and roseoflavin target two autonomous riboswitches simultaneously, thereby inhibiting de novo synthesis and uptake of riboflavin.
Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting
Cell Chem Biol 2017 May 18;24(5):576-588.e6.PMID:28434876DOI:10.1016/j.chembiol.2017.03.014.
Riboswitches are bacterial-specific, broadly conserved, non-coding RNA structural elements that control gene expression of numerous metabolic pathways and transport functions essential for cell growth. As such, riboswitch inhibitors represent a new class of potential antibacterial agents. Recently, we identified Ribocil-C, a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Here, we provide a mechanistic characterization of the antibacterial effects of Ribocil-C as well as of roseoflavin (RoF), an antimetabolite analog of RF, among medically significant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis. We provide genetic, biophysical, computational, biochemical, and pharmacological evidence that Ribocil-C and RoF specifically inhibit dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for MRSA growth and pathogenesis. Such a dual-targeting mechanism is specifically required to develop broad-spectrum Gram-positive antibacterial agents targeting RF metabolism.