Home>>Signaling Pathways>> Proteases>> Mitochondrial Metabolism>>Ru360

Ru360 Sale

目录号 : GC60330

Ru360,一种氧桥联的双核钌胺络合物,是一种选择性的线粒体钙摄取(mitochondrialcalciumuptake)抑制剂。Ru360有效抑制Ca2+吸收到线粒体中,IC50为0.184nM。Ru360以高亲和力(Kd为0.34nM)与线粒体结合。Ru360具有抗心律失常和心脏保护作用。

Ru360 Chemical Structure

规格 价格 库存
100μg
¥2,925.00
待询
500μg
¥7,380.00
待询

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

101

客户使用产品发表文献 1

产品文档

Quality Control & SDS

View current batch:

产品描述

Ru360, an oxygen-bridged dinuclear ruthenium amine complex, is a selective mitochondrial calcium uptake inhibitor. Ru360 potently inhibits Ca2+ uptake into mitochondria with an IC50 of 0.184 nM. Ru360 binds to mitochondria with high affinity (Kd of 0.34 nM). Ru360 has antiarrhythmic and cardioprotective effects[1][2].

Ru360 permeates slowly into the cell, and specifically inhibits mitochondrial calcium uptake in intact cardiomyocytes and in isolated heart. 1 μm Ru360 is taken up by myocardial cells and accumulated in the cytosol in a biphasic manner[1]. During pelleting hypoxia, Ru360 (10 µM) significantly improves cell viability in wild type cardiomyocytes[3].

Ru360 (15-50 nmol/kg) treatment abolishes the incidence of arrhythmias and haemodynamic dysfunction elicited by reperfusion in a whole rat model. Ru360 administration partially inhibits calcium uptake, preventing mitochondria from depolarization by the opening of the mitochondrial permeability transition pore (mPTP)[1].

References:
[1]. G de J GarcÍa-Rivas, et al. Ru360, a Specific Mitochondrial Calcium Uptake Inhibitor, Improves Cardiac Post-Ischaemic Functional Recovery in Rats in Vivo. Br J Pharmacol. 2006 Dec;149(7):829-37.
[2]. M A Matlib, et al. Oxygen-bridged Dinuclear Ruthenium Amine Complex Specifically Inhibits Ca2+ Uptake Into Mitochondria in Vitro and in Situ in Single Cardiac Myocytes. J Biol Chem. 1998 Apr 24;273(17):10223-31.
[3]. Lukas J Motloch, et al. UCP2 Modulates Cardioprotective Effects of Ru360 in Isolated Cardiomyocytes During Ischemia. Pharmaceuticals (Basel). 2015 Aug 4;8(3):474-82.

Chemical Properties

Cas No. SDF
Canonical SMILES [NH3][Ru]([NH3])([NH3])([NH3])(O[Ru]([NH3])([NH3])([NH3])([NH3])OC=O)OC=O.[Cl-].[Cl-].[Cl-].[3+]
分子式 C2H26Cl3N8O5Ru2 3- 分子量 550.78
溶解度 储存条件
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 1.8156 mL 9.078 mL 18.1561 mL
5 mM 0.3631 mL 1.8156 mL 3.6312 mL
10 mM 0.1816 mL 0.9078 mL 1.8156 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

UCP2 Modulates Cardioprotective Effects of Ru360 in Isolated Cardiomyocytes during Ischemia

Pharmaceuticals (Basel) 2015 Aug 4;8(3):474-82.PMID:26248074DOI:10.3390/ph8030474.

Introduction: Ruthenium 360 (Ru360) has been shown to induce cardioprotective mechanisms in perfused hearts. The agent is a specific blocker of the main cardiac mitochondrial uptake mechanism, the mitochondrial calcium uniporter (MCU). UCP2, a mitochondrial membrane protein, which influences cardiac ROS formation was reported to interact with the MCU. Methods: To prove whether Ru360 affects ischemic cell injury on the singular cell level, cell viability (CV) in isolated cardiomyocytes from wild type mice (WT) was measured in a model of pelleting hypoxia (PH). To explore a possible influence of UCP2 on cellular survival, as well as on Ru360 function, cardiomyocytes from UCP2-/- mice were investigated. Results: During PH, Ru360 significantly improved CV in WT cardiomyocytes (Control 26.32% ± 1.58% vs. PH 13.60% ± 1.20% vs. PH+Ru360 19.98% ± 0.98%, n = 6; p < 0.05). No differences in the rate of apoptosis were observed in UCP2-/- vs. WT. In UCP2-/- cardiomyocytes, Ru360 reduced the rate of cell death. However, the effect was less pronounced compared to WT cardiomyocytes. Conclusion: Ru360 significantly reduces hypoxic cell injury by preventing single cell apoptosis in WT cardiomyoctes. UCP2 does not affect cell survival in hypoxic cardiomyocytes, but it might modulate cardioprotective effects of Ru360 during ischemia.

Traumatic brain injury metabolome and mitochondrial impact after early stage Ru360 treatment

Mitochondrion 2021 Mar;57:192-204.PMID:33484870DOI:10.1016/j.mito.2021.01.003.

Ru360, a mitochondrial Ca2+ uptake inhibitor, was tested in a unilateral fluid percussion TBI model in developing rats (P31). Vehicle and Ru360 treated TBI rats underwent sensorimotor behavioral monitoring between 24 and 72 h, thereafter which 185 brain metabolites were analyzed postmortem using LC/MS. Ru360 treatment after TBI improved sensorimotor behavioral recovery, upregulated glycolytic and pentose phosphate pathways, mitigated oxidative stress and prevented NAD+ depletion across both hemispheres. While neural viability improved ipsilaterally, it reduced contralaterally. Ru360 treatment, overall, had a global impact with most benefit near the strongest injury impact areas, while perturbing mitochondrial oxidative energetics in the milder TBI impact areas.

Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post-ischaemic functional recovery in rats in vivo

Br J Pharmacol 2006 Dec;149(7):829-37.PMID:17031386DOI:10.1038/sj.bjp.0706932.

Background and purpose: The mitochondrial permeability transition pore (mPTP), an energy-dissipating channel activated by calcium, contributes to reperfusion damage by depolarizing the mitochondrial inner membrane potential. As mitochondrial Ca(2+) overload is a main inductor of mPTP opening, we examined the effect of Ru(360), a selective inhibitor of the mitochondrial calcium uptake system against myocardial damage induced by reperfusion in a rat model. Experimental approach: Myocardial reperfusion injury was induced by a 5-min occlusion of the left anterior descending coronary artery, followed by a 5-min reperfusion in anaesthetized open-chest rats. We measured reperfusion-induced arrhythmias and functions indicative of unimpaired mitochondrial integrity to evaluate the effect of Ru(360) treatment. Key results: Reperfusion elicited a high incidence of arrhythmias, haemodynamic dysfunction and loss of mitochondrial integrity. A bolus intravenous injection of Ru(360) (15-50 nmol kg(-1)), given 30-min before ischaemia, significantly improved the above mentioned variables in the ischaemic/reperfused myocardium. Calcium uptake in isolated mitochondria from Ru(360)-treated ventricles was partially diminished, suggesting an interaction of this compound with the calcium uniporter. Conclusions and implications: We showed that Ru(360) treatment abolishes the incidence of arrhythmias and haemodynamic dysfunction elicited by reperfusion in a whole rat model. Ru(360) administration partially inhibits calcium uptake, preventing mitochondria from depolarization by the opening of the mPTP. We conclude that myocardial damage could be a consequence of failure of the mitochondrial network to maintain the membrane potential at reperfusion. Hence, it is plausible that Ru(360) could be used in reperfusion therapy to prevent the occurrence of arrhythmia.

MCU Up-regulation contributes to myocardial ischemia-reperfusion Injury through calpain/OPA-1-mediated mitochondrial fusion/mitophagy Inhibition

J Cell Mol Med 2019 Nov;23(11):7830-7843.PMID:31502361DOI:10.1111/jcmm.14662.

Mitochondrial dynamic disorder is involved in myocardial ischemia/reperfusion (I/R) injury. To explore the effect of mitochondrial calcium uniporter (MCU) on mitochondrial dynamic imbalance under I/R and its related signal pathways, a mouse myocardial I/R model and hypoxia/reoxygenation model of mouse cardiomyocytes were established. The expression of MCU during I/R increased and related to myocardial injury, enhancement of mitochondrial fission, inhibition of mitochondrial fusion and mitophagy. Suppressing MCU functions by Ru360 during I/R could reduce myocardial infarction area and cardiomyocyte apoptosis, alleviate mitochondrial fission and restore mitochondrial fusion and mitophagy. However, spermine administration, which could enhance MCU function, deteriorated the above-mentioned myocardial cell injury and mitochondrial dynamic imbalanced. In addition, up-regulation of MCU promoted the expression and activation of calpain-1/2 and down-regulated the expression of Optic atrophy type 1 (OPA1). Meantime, in transgenic mice (overexpression calpastatin, the endogenous inhibitor of calpain) I/R model and OPA1 knock-down cultured cell. In I/R models of transgenic mice over-expressing calpastatin, which is the endogenous inhibitor of calpain, and in H/R models with siOPA1 transfection, inhibition of calpains could enhance mitochondrial fusion and mitophagy, and inhibit excessive mitochondrion fission and apoptosis through OPA1. Therefore, we conclude that during I/R, MCU up-regulation induces calpain activation, which down-regulates OPA1, consequently leading to mitochondrial dynamic imbalance.

Synergistic enhancing-memory effect of D-serine and Ru360, a mitochondrial calcium uniporter blocker in rat model of Alzheimer's disease

Behav Brain Res 2021 Jul 9;409:113307.PMID:33872664DOI:10.1016/j.bbr.2021.113307.

Background: Although Amyloid beta (Aβ) and N - methyl d- aspartate receptors (NMDARs are involved in Ca2+ neurotoxicity, the function of mitochondrial calcium uniporter in cognition deficit remain uncertain. Here, we examined the effect of mitochondrial calcium uniporter (MCU) blocker, together with NMDA receptor agonist d-cycloserine (DCS) on memory impairment in a rat model of AD. Methods: Forty adult male Wistar rats underwent stereotaxic cannulation for inducing AD by intracerebroventricular (ICV) injection of Aβ1-42 (5 μg /8 μl/rat). Then animals were divided into 5 groups of: Saline + Saline, Aβ + Saline, Aβ + Ru360, Aβ + DCS, Aβ + Ru360 + DCS. Two weeks after the treatments, Morris Water Maze (MWM) and step through passive avoidance learning (SPL) were undertaken for evaluating of spatial and associative memories, respectively. Hippocampal level of cyclic-AMP response element binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were measured by western blot and ELISA. Results: Co - administration of Ru360 and DCS significantly improved both acquisition and retrieval of spatial memory as evident by decreased escape latency and increased time spent in the target quadrant (TTS) in MWM, together with increase in step-through latency, but reduced time spent in the dark compartment in SPL. Furthermore, there was a significant rise in the hippocampal level of CREB and BDNF in comparison with Aβ + Saline. Conclusion: The present study supports the idea that co- administration of Ru360 and DCS ameliorate memory impairment induced by Aβ 1-42 probably via CREB / BDNF signaling.