(S)-3-Oxo-cyclopentanecarboxylic acid methyl ester
(Synonyms: (1S)-3-氧代环戊烷-1-羧酸甲酯) 目录号 : GC41734A synthetic intermediate useful for pharmaceutical synthesis
Cas No.:132076-32-5
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >95.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
(S)-3-Oxo-cyclopentanecarboxylic acid methyl ester is a synthetic intermediate useful for pharmaceutical synthesis.
Cas No. | 132076-32-5 | SDF | |
别名 | (1S)-3-氧代环戊烷-1-羧酸甲酯 | ||
Canonical SMILES | O=C1C[C@@H](C(OC)=O)CC1 | ||
分子式 | C7H10O3 | 分子量 | 142.2 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 7.0323 mL | 35.1617 mL | 70.3235 mL |
5 mM | 1.4065 mL | 7.0323 mL | 14.0647 mL |
10 mM | 0.7032 mL | 3.5162 mL | 7.0323 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Synthesis of (S)-ricinoleic acid and its methyl ester with the participation of ionic liquid
Chem Phys Lipids 2014 Oct;183:137-41.PMID:24956018DOI:10.1016/j.chemphyslip.2014.06.005.
(R)-ricinoleic acid methyl ester obtained from commercial castor oil was transformed in a three-step procedure into its S-enantiomer in overall 36% yield using ionic liquid (1-butyl-3-methylimidazolium acetate) in the key step process. The developed procedure provides easy access to (S)-ricinoleic acid and its methyl ester of over 95% enantiomeric excess. Optical rotations of the newly obtained compounds as well as their chromatographic and spectral characteristics are provided and discussed in the context of enantiopurity both of the substrate material and the final products.
Enantioselective Resolution of (R, S)-2-Phenoxy-Propionic Acid Methyl Ester by Covalent Immobilized Lipase from Aspergillus oryzae
Appl Biochem Biotechnol 2020 Mar;190(3):1049-1059.PMID:31664700DOI:10.1007/s12010-019-03145-4.
(R)-2-Phenoxy-propionic acid methyl ester (PPAM) is an important chiral precursor of aryloxy phenoxy propionate herbicides. The covalent immobilization of lipase from Aspergillus oryzae WZ007 and the catalysis of enantioselective (R, S)-PPAM resolution by the immobilized A. oryzae lipase (AOL) were investigated in this study. The primary amino resin LX-1000HA was selected as the support for the covalent immobilization of AOL. The Km and Vmax of the immobilized lipase were 1.97 mM and 4.84 × 103 μmol/mg min, respectively. The key reaction parameters (pH, temperature, rotation speed, and substrate concentration) for the lipase-catalyzed resolution of (R, S)-PPAM were optimized. An e.e.S of 99.5% and conversion rate of 50.8% were achieved under the optimal conditions of pH 7.5, 30 °C, and substrate concentration 500 mM. The immobilized lipase retained 87.3% of its initial activity after 15 cycles of the repeated experiments. The results demonstrated that the covalent immobilized AOL has potential industrial applications.
Synthesis and evaluation of 26-amino acid methyl ester substituted sarsasapogenin derivatives as neuroprotective agents for Alzheimer'S disease
Steroids 2017 Sep;125:93-106.PMID:28687235DOI:10.1016/j.steroids.2017.06.013.
Sarsasapogenin, extracted from Anemarrhena asphodeloides Bunge., has been reported to protect neurons from H2O2-induced damage. In the current study, four series of 26-amino acid methyl ester substituted sarsasapogenin derivatives (5a-5e, 5f-5j, 6a-6e and 7a-7e) were synthesized and tested for neuroprotective activity by evaluating their neuroprotective ratio against SH-SHY5Y cell lines. Studies showed that most of the target compounds displayed better neuroprotective effects than that of sarsasapogenin. Structure-activity relationship analysis suggested that 3-methoxy derivatives (5f-5j) were more potent than other series and the phenylalanine methyl ester moiety at C-26 was important for exhibiting apparent neuroprotective activity. It was worth noting that compound 5h exhibited optimal neuroprotective activity (102.2%) compared with sarsasapogenin (27.3%) and trolox (40.5%), and this encouraged us to investigate the cellular mechanism of 5h further. Our investigation revealed that 5h could attenuate H2O2-induced cell damage by inhibiting the expression of cleaved poly (ADP-ribose) polymerase (PARP) and cleaved caspase-3 as well as rescuing the downregulation of brain-derived neurotrophic factor (BDNF) and its tyrosine receptor kinase B (TrkB). Taken together, these results suggest that the representative compound 5h is a profound lead compound for further investigation and the sarsasapogenin skeleton could be a promising structural template for the development of new anti-Alzheimer drug candidates.
Chiral separation of N-methyl-DL-aspartic acid in rat brain tissue as N-ethoxycarbonylated (S)-(+)-2-octyl ester derivatives by GC-MS
Biomed Chromatogr 2012 Nov;26(11):1353-6.PMID:22290726DOI:10.1002/bmc.2703.
A selective and sensitive analytical method was developed for enantiomeric separation and determination of N-methyl-DL-aspartic acid (NMA). The method involved the conversion of each enantiomer into N-ethoxycarbonylated (S)-(+)-2-octyl ester derivative for the direct separation by gas chromatography-mass spectrometry (GC-MS). The diastereomeric derivatives showed characteristic mass spectral properties for analysis by selected ion monitoring mode (SIM) and enabling enantioseparation on an achiral capillary column. Two enantiomers were baseline separated, and the detection limits for N-methyl-L-aspartic acid (NMLA) and N-methyl-D-aspartic acid (NMDA) were 0.07 and 0.03 ng/g, respectively. When applied to rat brain tissues for absolute configuration of NMA, only NMDA was determined, while NMLA was monitored as lower than the limit of detection.
Biting deterrency of undecanoic acid and dodecanoic acid ester analogs against Aedes aegypti
Pest Manag Sci 2021 Aug;77(8):3737-3743.PMID:32648638DOI:10.1002/ps.5994.
Background: Mosquitoes remain one of the most significant threats to the health of humans throughout the world. This study was designed to evaluate the biting deterrent effects of a series of ester analogs of undecanoic acid (C:11:0) and dodecanoic acid (C:12:0) against Aedes aegypti (L), (Diptera: Culicidae), the yellow fever mosquito, using Klun and Debboun (K&D) and Ali and Khan (A&K) bioassay systems. Results: In the K&D bioassays, C:11:0 esters methyl undecanoate, propyl undecanoate, butyl undecanoate, and pentyl undecanoate, and the C:12:0 esters methyl dodecanoate, ethyl dodecanoate, propyl dodecanoate, octyl dodecanoate, and dodecyl dodecanoate were most active. All of these esters were as effective as N,N-diethyl-m-toluamide (DEET) and as effective as the parent acids undecanoic acid and dodecanoic acid with biting deterrence index values ranging from 0.80 to 0.99. In the in vitro A&K bioassay undecanoic acid with a minimum effective dose (MED) of 3.125 μg cm-2 was the most active compound and showed higher activity than DEET (MED of 25 μg cm-2 ). The most active synthetic analog was butyl undecanoate with a MED of 12.5 μg cm-2 . The next most active analogs are the methyl ester analogs methyl undecanoate and methyl dodecanoate, both with MED values of 25 μg cm-2 . Conclusion: Fatty acid synthetic esters and structural analogs are a promising source of new mosquito repelling compounds and should be investigated further. Published 2020. This article is a U.S. Government work and is in the public domain in the USA.