(S)-nitro-Blebbistatin
(Synonyms: S(-)7Desmethyl8nitro Blebbistatin) 目录号 : GC41739A more stable form of (–)-blebbistatin
Cas No.:856925-75-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
(S)-nitro-Blebbistatin is a more stable form of (-)-blebbistatin , which is a selective cell-permeable inhibitor of non-muscle myosin II ATPases. (-)-Blebbistatin rapidly and reversibly inhibits Mg-ATPase activity and in vitro motility of non-muscle myosin IIA and IIB for several species (IC50s = 0.5-5 µM), while poorly inhibiting smooth muscle myosin (IC50 = 80 µM). Through these effects, it blocks apoptosis-related bleb formation, directed cell migration, and cytokinesis in vertebrate cells. However, prolonged exposure to blue light (450-490 nm) results in degradation of blebbistatin to an inactive product via cytotoxic intermediates, which may be problematic for its use in fluorescent live cell imaging applications. The addition of a nitro group stabilizes the molecule to circumvent its degradation by prolonged blue light exposure. (S)-nitro-Blebbistatin has the same stereochemistry as the active (-)-blebbistatin enantiomer.
Cas No. | 856925-75-2 | SDF | |
别名 | S(-)7Desmethyl8nitro Blebbistatin | ||
Canonical SMILES | O=C1[C@@]2(O)C(N(C3=CC=CC=C3)CC2)=NC4=C1C=CC([N+]([O-])=O)=C4 | ||
分子式 | C17H13N3O4 | 分子量 | 323.3 |
溶解度 | DMF: 16 mg/ml,DMSO: 16 mg/ml,DMSO:PBS(pH7.2) (1:1): 0.5 mg/ml | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.0931 mL | 15.4655 mL | 30.931 mL |
5 mM | 0.6186 mL | 3.0931 mL | 6.1862 mL |
10 mM | 0.3093 mL | 1.5466 mL | 3.0931 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Deciphering cellular signals in adult mouse sinoatrial node cells
iScience 2021 Dec 25;25(1):103693.PMID:35036877DOI:10.1016/j.isci.2021.103693.
Sinoatrial node (SAN) cells are the pacemakers of the heart. This study describes a method for culturing and infection of adult mouse SAN cells with FRET-based biosensors that can be exploited to examine signaling events. SAN cells cultured in media with blebbistatin or (S)-nitro-Blebbistatin retain their morphology, protein distribution, action potential (AP) waveform, and cAMP dynamics for at least 40 h. SAN cells expressing targeted cAMP sensors show distinct β-adrenergic-mediated cAMP pools. Cyclic GMP, protein kinase A, Ca2+/CaM kinase II, and protein kinase D in SAN cells also show unique dynamics to different stimuli. Heart failure SAN cells show a decrease in cAMP and cGMP levels. In summary, a reliable method for maintaining adult mouse SAN cells in culture is presented, which facilitates studies of signaling networks and regulatory mechanisms during physiological and pathological conditions.
Illuminating cell signaling with genetically encoded FRET biosensors in adult mouse cardiomyocytes
J Gen Physiol 2018 Nov 5;150(11):1567-1582.PMID:30242036DOI:10.1085/jgp.201812119.
FRET-based biosensor experiments in adult cardiomyocytes are a powerful way of dissecting the spatiotemporal dynamics of the complicated signaling networks that regulate cardiac health and disease. However, although much information has been gleaned from FRET studies on cardiomyocytes from larger species, experiments on adult cardiomyocytes from mice have been difficult at best. Thus the large variety of genetic mouse models cannot be easily used for this type of study. Here we develop cell culture conditions for adult mouse cardiomyocytes that permit robust expression of adenoviral FRET biosensors and reproducible FRET experimentation. We find that addition of 6.25 µM blebbistatin or 20 µM (S)-nitro-Blebbistatin to a minimal essential medium containing 10 mM HEPES and 0.2% BSA maintains morphology of cardiomyocytes from physiological, pathological, and transgenic mouse models for up to 50 h after adenoviral infection. This provides a 10-15-h time window to perform reproducible FRET readings using a variety of CFP/YFP sensors between 30 and 50 h postinfection. The culture is applicable to cardiomyocytes isolated from transgenic mouse models as well as models with cardiac diseases. Therefore, this study helps scientists to disentangle complicated signaling networks important in health and disease of cardiomyocytes.