(S)-Tenofovir
(Synonyms: (S)-替诺福韦; (S)-GS 1278; (S)-PMPA; (S)-TDF) 目录号 : GC39317(S)-Tenofovir ((S)-GS 1278) 是 Tenofovir 的低活性 S 型异构体。Tenofovir 是一种核苷酸逆转录酶 (nucleotide reverse transcriptase) 抑制剂,可用于治疗 HIV 和慢性乙型肝炎 (Hepatitis B; HBV)。
Cas No.:147127-19-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
(S)-Tenofovir ((S)-GS 1278) is the less active S-enantiomer of Tenofovir. Tenofovir is a nucleotide reverse transcriptase inhibitor to treat HIV and chronic Hepatitis B (HBV)[1].
[1]. Murphy RA, et al. Establishment of HK-2 Cells as a Relevant Model to Study Tenofovir-Induced Cytotoxicity. Int J Mol Sci. 2017 Mar 1;18(3).
Cas No. | 147127-19-3 | SDF | |
别名 | (S)-替诺福韦; (S)-GS 1278; (S)-PMPA; (S)-TDF | ||
Canonical SMILES | OP(O)(CO[C@@H](C)CN1C=NC2=C(N)N=CN=C12)=O | ||
分子式 | C9H14N5O4P | 分子量 | 287.21 |
溶解度 | DMSO : 5 mg/mL (17.41 mM; ultrasonic and warming and heat to 60°C) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.4818 mL | 17.4089 mL | 34.8177 mL |
5 mM | 0.6964 mL | 3.4818 mL | 6.9635 mL |
10 mM | 0.3482 mL | 1.7409 mL | 3.4818 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Differential binding of tenofovir and adefovir to reverse transcriptase of hepatitis B virus
PLoS One 2014 Sep 2;9(9):e106324.PMID:25180507DOI:PMC4152281
Introduction: Resistance of the reverse transcriptase (RT) of hepatitis B virus (HBV) to the tenofovir nucleotide drug has not been observed since its introduction for treatment of hepatitis B virus (HBV) infection in 2008. In contrast, frequent viral breakthrough and resistance has been documented for adefovir. Our computational study addresses an inventory of the structural differences between these two nucleotide analogues and their binding sites and affinities to wildtype (wt) and mutant RT enzyme structures based on in silico modeling, in comparison with the natural nucleotide substrates. Results: Tenofovir and adefovir only differ by an extra CH3-moiety in tenofovir, introducing a center of chirality at the carbon atom linking the purine group with the phosphates. (R)-Tenofovir (and not (S)-Tenofovir) binds significantly better to HBV-RT than adefovir. "Single hit" mutations in HBV-RT associated with adefovir resistance may affect the affinity for tenofovir, but to a level that is insufficient for tenofovir resistance. The RT-Surface protein gene overlap in the HBV genome provides an additional genetic constraint that limits the mutational freedom required to generate drug-resistance. Different pockets near the nucleotide binding motif (YMDD) in HBV-RT can bind nucleotides and nucleotide analogues with different affinities and specificities. Conclusion: The difference in binding affinity of tenofovir (more than two orders of magnitude in terms of local concentration), a 30x higher dosage of the (R)-tenofovir enantiomer as compared to conformational isomeric or rotameric adefovir, and the constrained mutational space due to gene overlap in HBV may explain the absence of resistance mutations after 6 years of tenofovir monotherapy. In addition, the computational methodology applied here may guide the development of antiviral drugs with better resistance profiles.