S2116
目录号 : GC64303S2116 是 N-烷基化的反式环丙胺 (TCP) 衍生物,是一种有效的赖氨酸特异性脱甲基酶 1 (LSD1) 抑制剂。S2116 在超级增强子区域增加 H3K9 甲基化和相应的 H3K27 脱乙酰化。S2116 抑制 NOTCH3 和 TAL1 基因的转录,从而诱导 TCP 抵抗性急性淋巴细胞白血病 T-ALL 细胞凋亡 (apoptosis)。S2116 显着延迟异种移植小鼠中 T-ALL 细胞的生长。
Cas No.:2262489-89-2
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
S2116, a N-alkylated tranylcypromine (TCP) derivative, is a potent lysine-specific demethylase 1 (LSD1) inhibitor. S2116 increases H3K9 methylation and reciprocal H3K27 deacetylation at super-enhancer regions. S2116 induces apoptosis in TCP-resistant T-cell acute lymphoblastic leukemia (T-ALL) cells by repressing transcription of the NOTCH3 and TAL1 genes. S2116 significantly retardes the growth of T-ALL cells in xenotransplanted mice[1].
S2116 is particularly effective for T-ALL cell lines with the IC50 values between 1.1 µM for human T-ALL cell lines CEM and 6.8 µM for MOLT4[1]. S2116 (4-20 µM; 72 hours) modestly inhibits mitogen-activated normal T-lymphocytes[1]. S2116 (4-8 µM; 24 hours) induces apoptosis and down-regulates the expression of NOTCH3 and TAL1 proteins in T-ALL cells[1].
S2116 (50 mg/kg; IP; 3 times a week; for 28 days) causes the size of subcutaneous tumors reduced to less than 20% of that in the untreated control[1]. S2116 (50 mg/kg; IP) has a T1/2 of 3.76 hours, a Cmax of 12.7 μM and an AUC of 59.2 μM•h[1].
[1]. Shiori Saito, et al. Eradication of Central Nervous System Leukemia of T-Cell Origin With a Brain-Permeable LSD1 Inhibitor. Clin Cancer Res. 2019 Mar 1;25(5):1601-1611.
Cas No. | 2262489-89-2 | SDF | Download SDF |
分子式 | C22H26ClF2N3O2 | 分子量 | 437.91 |
溶解度 | 储存条件 | Store at -20°C | |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.2836 mL | 11.4179 mL | 22.8357 mL |
5 mM | 0.4567 mL | 2.2836 mL | 4.5671 mL |
10 mM | 0.2284 mL | 1.1418 mL | 2.2836 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Development and Structural Evaluation of N-Alkylated trans-2-Phenylcyclopropylamine-Based LSD1 Inhibitors
ChemMedChem 2020 May 6;15(9):787-793.PMID:32166890DOI:10.1002/cmdc.202000014.
Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD)-dependent enzyme that catalyzes the demethylation of histone H3 and regulates gene expression. Because it is implicated in the regulation of diseases such as acute myeloid leukemia, potent LSD1-specific inhibitors have been pursued. Trans-2-phenylcyclopropylamine (2-PCPA)-based inhibitors featuring substitutions on the amino group have emerged, with sub-micromolar affinities toward LSD1 and high selectivities over monoamine oxidases (MAOs). We synthesized two N-alkylated 2-PCPA-based LSD1 inhibitors, S2116 and S2157, based on the previously developed S2101. S2116 and S2157 exhibited enhanced potency for LSD1 by 2.0- to 2.6-fold, as compared with S2101. In addition, they exhibited improved selectivity over MAOs. Structural analyses of LSD1 co-crystallized with S2101, S2116, S2157, or another N-alkylated inhibitor (FCPA-MPE) confirmed that the N-substituents enhance the potency of a 2-PCPA-based inhibitor of LSD1, without constituting the adduct formed with FAD.
Eradication of Central Nervous System Leukemia of T-Cell Origin with a Brain-Permeable LSD1 Inhibitor
Clin Cancer Res 2019 Mar 1;25(5):1601-1611.PMID:30518632DOI:10.1158/1078-0432.CCR-18-0919.
Purpose: Lysine-specific demethylase 1 (LSD1) regulates several biological processes via the bifunctional modulation of enhancer functions. Recently, we reported that LSD1 overexpression is a founder abnormality of T-cell leukemogenesis and is maintained in fully transformed T-cell acute lymphoblastic leukemia (T-ALL) cells. On the basis of this finding, we attempted to develop novel LSD1 inhibitors effective for T-ALL with central nervous system (CNS) involvement. Experimental design: We chemically modified the prototype LSD inhibitor tranylcypromine (TCP) and screened for cytotoxicity against TCP-resistant T-ALL cell lines. In vivo efficacy of novel LSD1 inhibitors was examined in immunodeficient mice transplanted with luciferase-expressing T-ALL cell lines, which faithfully reproduce human T-ALL with CNS involvement. Results: We found robust cytotoxicity against T-ALL cells, but not normal bone marrow progenitors, for two N-alkylated TCP derivatives, S2116 and S2157. The two compounds induced apoptosis in TCP-resistant T-ALL cells in vitro and in vivo by repressing transcription of the NOTCH3 and TAL1 genes through increased H3K9 methylation and reciprocal H3K27 deacetylation at superenhancer regions. Both S2116 and S2157 significantly retarded the growth of T-ALL cells in xenotransplanted mice and prolonged the survival of recipients as monotherapy and in combination with dexamethasone. Notably, S2157 could almost completely eradicate CNS leukemia because of its ability to efficiently pass through the blood-brain barrier. Conclusions: These findings provide a molecular basis and rationale for the inclusion of a brain-permeable LSD1 inhibitor, S2157, in treatment strategies for T-ALL with CNS involvement.