Sacubitrilat (LBQ-657)
(Synonyms: LCZ696杂质,Desethyl Sacubitril; LBQ-657) 目录号 : GC30786A neprilysin inhibitor
Cas No.:149709-44-4
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
LBQ657 is an inhibitor of neprilysin (IC50 = 5 nM).1 It is selective for neprilysin over angiotensin converting enzyme (ACE) when used at a concentration of 10 μM. LBQ657 inhibits neprilysin cleavage of enkephalin, glutaryl-Ala-Ala-Phe-β-napthylamide, and atrial natriuretic factor (IC50s = 5, 0.74, and 5.3 nM, respectively).
1.Ksander, G.M., Ghai, R.D., deJesus, R., et al.Dicarboxylic acid dipeptide neutral endopeptidase inhibitorsJ. Med. Chem.38(10)1689-1700(1995)
Cas No. | 149709-44-4 | SDF | |
别名 | LCZ696杂质,Desethyl Sacubitril; LBQ-657 | ||
Canonical SMILES | [H]N(C(CCC(O)=O)=O)[C@H](CC(C=C1)=CC=C1C2=CC=CC=C2)C[C@H](C(O)=O)C | ||
分子式 | C22H25NO5 | 分子量 | 383.44 |
溶解度 | DMSO : ≥ 100 mg/mL (260.80 mM) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.608 mL | 13.0398 mL | 26.0797 mL |
5 mM | 0.5216 mL | 2.608 mL | 5.2159 mL |
10 mM | 0.2608 mL | 1.304 mL | 2.608 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Clinical Pharmacokinetics of Sacubitril/Valsartan (LCZ696): A Novel Angiotensin Receptor-Neprilysin Inhibitor
Sacubitril/valsartan (LCZ696) is indicated for the treatment of heart failure with reduced ejection fraction. Absorption of sacubitril/valsartan and conversion of sacubitril (prodrug) to sacubitrilat (neprilysin inhibitor) was rapid with maximum plasma concentrations of sacubitril, sacubitrilat, and valsartan (angiotensin receptor blocker) reaching within 0.5, 1.5-2.0, and 2.0-3.0 h, respectively. With a two-fold increase in dose, an increase in the area under the plasma concentration-time curve was proportional for sacubitril, ~1.9-fold for sacubitrilat, and ~1.7-fold for valsartan in healthy subjects. Following multiple twice-daily administration, steady-state maximum plasma concentration was reached within 3 days, showing no accumulation for sacubitril and valsartan, while ~1.6-fold accumulation for sacubitrilat. Sacubitril is eliminated predominantly as sacubitrilat through the kidney; valsartan is eliminated mainly by biliary route. Drug-drug interactions of sacubitril/valsartan were evaluated with medications commonly used in patients with heart failure including furosemide, warfarin, digoxin, carvedilol, levonorgestrel/ethinyl estradiol combination, amlodipine, omeprazole, hydrochlorothiazide, intravenous nitrates, metformin, statins, and sildenafil. Co-administration with sacubitril/valsartan increased the maximum plasma concentration (~2.0-fold) and area under the plasma concentration-time curve (1.3-fold) of atorvastatin; however, it did not affect the pharmacokinetics of simvastatin. Age, sex, or ethnicity did not affect the pharmacokinetics of sacubitril/valsartan. In patients with heart failure vs. healthy subjects, area under the plasma concentration-time curves of sacubitril, sacubitrilat, and valsartan were higher by approximately 1.6-, 2.1-, and 2.3-fold, respectively. Renal impairment had no significant impact on sacubitril and valsartan area under the plasma concentration-time curves, while the area under the plasma concentration-time curve of sacubitrilat correlated with degree of renal function (1.3-, 2.3-, 2.9-, and 3.3-fold with mild, moderate, and severe renal impairment, and end-stage renal disease, respectively). Moderate hepatic impairment increased the area under the plasma concentration-time curves of valsartan and sacubitrilat ~2.1-fold.
Erratum to: Clinical Pharmacokinetics of Sacubitril/Valsartan (LCZ696): A Novel Angiotensin Receptor-Neprilysin Inhibitor
Sacubitril/valsartan (LCZ696) is indicated for the treatment of heart failure with reduced ejection fraction. Absorption of sacubitril/valsartan and conversion of sacubitril (prodrug) to sacubitrilat (neprilysin inhibitor) was rapid with maximum plasma concentrations of sacubitril, sacubitrilat, and valsartan (angiotensin receptor blocker) reaching within 0.5, 1.5-2.0, and 2.0-3.0 h, respectively. With a twofold increase in dose, an increase in the area under the plasma concentration-time curve was proportional for sacubitril, ~1.9-fold for sacubitrilat, and ~1.7-fold for valsartan in healthy subjects. Following multiple twice-daily administration, steady-state maximum plasma concentration was reached within 3 days, showing no accumulation for sacubitril and valsartan, while ~1.6-fold accumulation for sacubitrilat. Sacubitril is eliminated predominantly as sacubitrilat through the kidney; valsartan is eliminated mainly by biliary route. Drug-drug interactions of sacubitril/valsartan were evaluated with medications commonly used in patients with heart failure including furosemide, warfarin, digoxin, carvedilol, levonorgestrel/ethinyl estradiol combination, amlodipine, omeprazole, hydrochlorothiazide, intravenous nitrates, metformin, statins, and sildenafil. Co-administration with sacubitril/valsartan increased the maximum plasma concentration (~2.0-fold) and area under the plasma concentration-time curve (1.3-fold) of atorvastatin; however, it did not affect the pharmacokinetics of simvastatin. Age, sex, or ethnicity did not affect the pharmacokinetics of sacubitril/valsartan. In patients with heart failure vs. healthy subjects, area under the plasma concentration-time curves of sacubitril, sacubitrilat, and valsartan were higher by approximately 1.6-, 2.1-, and 2.3-fold, respectively. Renal impairment had no significant impact on sacubitril and valsartan area under the plasma concentration-time curves, while the area under the plasma concentration-time curve of sacubitrilat correlated with degree of renal function (1.3-, 2.3-, 2.9-, and 3.3-fold with mild, moderate, and severe renal impairment, and end-stage renal disease, respectively). Moderate hepatic impairment increased the area under the plasma concentration-time curves of valsartan and sacubitrilat ~2.1-fold.
Pharmacokinetics and safety of sacubitril/valsartan (LCZ696) in patients with mild and moderate hepatic impairment
Objectives: To assess the protein binding and pharmacokinetics of sacubitril/valsartan analytes (sacubitril, sacubitrilat, and valsartan) in an open-label, single oral dose (200 mg), parallel-group study in patients with mild and moderate hepatic impairment (Child-Pugh class A and B) and matched healthy subjects.
Methods: This study enrolled 32 subjects (n = 8 in each hepatic impairment and matched healthy subjects groups). Blood samples were collected at pre-determined time points to assess pharmacokinetics of sacubitril, sacubitrilat, and valsartan. Subjects with severe hepatic impairment were excluded as valsartan exposure is expected to be substantially increased in these patients.
Results: Sacubitril exposure (AUC) increased by 53% and 245% while the exposure to sacubitrilat was increased by 48% and 90% in patients with mild and moderate hepatic impairment, respectively. Sacubitril Cmax increased by 57% and 210% in mild and moderate hepatic impairment; however, for both sacubitrilat and valsartan, Cmax was unchanged. Valsartan AUC increased in patients with mild and moderate hepatic impairment by 19 - 109%, respectively.
Conclusions: The increase in systemic exposures to all sacubitril/valsartan analytes correlated with the severity of liver disease. The plasma unbound fraction of sacubitrilat in patients with moderate hepatic impairment was slightly higher than in matched healthy subjects. This difference was not considered clinically significant. Safety assessments showed that sacubitril/valsartan was safe and well tolerated across all the study groups. .
Effects of BNP and Sacubitrilat/Valsartan on Atrial Functional Reserve and Arrhythmogenesis in Human Myocardium
Background: Although the angiotensin receptor-neprilysin inhibitor (ARNI) sacubitril/valsartan started a new era in heart failure (HF) treatment, less is known about the tissue-level effects of the drug on the atrial myocardial functional reserve and arrhythmogenesis.
Methods and results: Right atrial (RA) biopsies were retrieved from patients (n = 42) undergoing open-heart surgery, and functional experiments were conducted in muscle strips (n = 101). B-type natriuretic peptide (BNP) did not modulate systolic developed force in human myocardium during β-adrenergic stimulation, but it significantly reduced diastolic tension (p < 0.01) and the probability of arrhythmias (p < 0.01). In addition, patient's plasma NTproBNP positively correlated with isoproterenol-induced contractile reserve in atrial tissue in vitro (r = 0.65; p < 0.01). Sacubitrilat+valsartan (Sac/Val) did not show positive inotropic effects on atrial trabeculae function but reduced arrhythmogeneity. Atrial and ventricular biopsies from patients with end-stage HF (n = 10) confirmed that neprilysin (NEP) is equally expressed in human atrial and ventricular myocardium. RA NEP expression correlates positively with RA ejection fraction (EF) (r = 0.806; p < 0.05) and left ventricle (LV) NEP correlates inversely with left atrial (LA) volume (r = -0.691; p < 0.05).
Conclusion: BNP ameliorates diastolic tension during adrenergic stress in human atrial myocardium and may have positive long-term effects on the inotropic reserve. BNP and Sac/Val reduce atrial arrhythmogeneity during adrenergic stress in vitro. Myocardial NEP expression is downregulated with declining myocardial function, suggesting a compensatory mechanism in HF.
From ARB to ARNI in Cardiovascular Control
Coexistence of hypertension, diabetes mellitus and chronic kidney disease synergistically aggravates the risk of cardiovascular and renal morbidity and mortality. These high-risk, multi-morbid patient populations benefit less from currently available anti-hypertensive treatment. Simultaneous angiotensin II type 1 receptor blockade and neprilysin inhibition ('ARNI') with valsartan/sacubitril (LCZ696) might potentiate the beneficial effects of renin-angiotensin-aldosterone inhibition by reinforcing its endogenous counterbalance, the natriuretic peptide system. This review discusses effects obtained with this approach in animals and humans. In animal models of hypertension, either alone or in combination with myocardial infarction or diabetes, ARNI consistently reduced heart weight and cardiac fibrosis in a blood pressure-independent manner. Additionally, LCZ696 treatment reduced proteinuria, focal segmental glomerulosclerosis and retinopathy, thus simultaneously demonstrating favourable effects on microvascular complications. These results were confirmed in patient populations. Besides blood pressure reductions in hypertensive patients and greatly improved (cardiovascular) mortality in heart failure patients, ventricular wall stress and albuminuria were reduced particularly in diabetic patients. The exact underlying mechanism remains unknown, but may involve improved renal haemodynamics and reduced glomerulosclerosis, e.g. related to a rise in natriuretic peptide levels. However, the assays of these peptides are hampered by methodological artefacts. Moreover, since sacubitrilat is largely renally cleared, drug accumulation may occur in patients with impaired renal function and thus hypotension is a potential side effect in patients with chronic kidney disease. Further caution is warranted since neprilysin also degrades endothelin-1 and amyloid beta in animal models. Accumulation of the latter may increase the risk of Alzheimer's disease.