Home>>Signaling Pathways>> Apoptosis>>Sappanchalcone

Sappanchalcone Sale

目录号 : GC64645

Sappanchalcone 从 Caesalpinia sappan L. 中提取的黄酮类化合物,诱导人结肠癌细胞凋亡 (apoptosis)。

Sappanchalcone Chemical Structure

Cas No.:94344-54-4

规格 价格 库存 购买数量
1 mg
¥3,150.00
现货
5 mg
¥8,820.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Sappanchalcone, a flavonoid isolated from Caesalpinia sappan L., induces caspase-dependent and AIF-dependent apoptosis in human colon cancer cells[1].

Sappanchalcone has a statistically significant effect on HCT116 cells than on SW480 cells (IC50= 37.33 μM and 54.23 μM, respectively). Sappanchalcone reduces MMP with a significant increase in ROS levels in human colon cancer cells. Sappanchalcone triggered phosphorylation of p53, which is involved in the activation of caspases and increased expression of Bax in HCT116 cells[1].

[1]. Seo HW, et al. Sappanchalcone, a flavonoid isolated from Caesalpinia sappan L., induces caspase-dependent and AIF-dependent apoptosis in human colon cancer cells. Chem Biol Interact. 2020;327:109185.

Chemical Properties

Cas No. 94344-54-4 SDF Download SDF
分子式 C16H14O5 分子量 286.28
溶解度 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.4931 mL 17.4654 mL 34.9308 mL
5 mM 0.6986 mL 3.4931 mL 6.9862 mL
10 mM 0.3493 mL 1.7465 mL 3.4931 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Sappanchalcone, a flavonoid isolated from Caesalpinia sappan L., induces caspase-dependent and AIF-dependent apoptosis in human colon cancer cells

Chem Biol Interact 2020 Aug 25;327:109185.PMID:32590072DOI:10.1016/j.cbi.2020.109185.

The present study examined the apoptotic effects and the underlying mechanism of Sappanchalcone, a major bioactive compound isolated from Caesalpinia sappan L. on human colon cancer cells. To achieve this, we used two different colon cancer cell lines, namely HCT116 (as wild-type p53 cells) and SW480 (as p53-mutant cells) cells. Our results illustrated that Sappanchalcone treatment decreased the proliferation and further promoted apoptosis in HCT116 cells compared with the findings in SW480 cells. Sappanchalcone triggered phosphorylation of p53, which is involved in the activation of caspases and increased expression of Bax in HCT116 cells. Conversely, sappanchalcone-treated SW480 cells displayed no change in p53 phosphorylation or caspase activation. In addition, Sappanchalcone further increased reactive oxygen species (ROS) levels and apoptosis-inducing factor (AIF) release in both HCT116 and SW480 cells. These data suggest that Sappanchalcone induces apoptosis through caspase-dependent and caspases-independent mechanisms that were characterized by decreased Bcl-2 expression, mitochondrial targeting, and altered ROS production and AIF translocation to the nuclei.

Mechanism of sappanchalcone-induced growth inhibition and apoptosis in human oral cancer cells

Toxicol In Vitro 2011 Dec;25(8):1782-8.PMID:21963806DOI:10.1016/j.tiv.2011.09.009.

Sappanchalcone, a flavonoid extracted from Caesalpinia sappan, exhibits cytoprotective activity, but the molecular basis for the anticancer effect of Sappanchalcone has not been reported. In this study, we examined whether Sappanchalcone could inhibit the growth of human primary and metastatic oral cancer cells, and we analyzed the signaling pathway underlying the apoptotic effects of the compound in this process using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide (MTT) assays, fluorescence microscopy, flow cytometry, and Western blotting. Sappanchalcone-treated oral cancer cells showed an increased cytosolic level of cytochrome c, downregulated Bcl-2 expression, upregulated Bax and p53 expression, caspase-3 and -9 activation, and poly (ADP-ribose) polymerase cleavage. Furthermore, Sappanchalcone induced activation of p38, extracellular signal-regulated kinase (ERK), c-Jun amino-terminal kinase (JNK), and Nuclear factor k B (NF-κB), as demonstrated by the phosphorylation of each mitogen-activated protein kinases (MAPKs), the degradation of inhibitor of NF-κα (IκB-α), increased expression of nuclear p65, and NF-κB-DNA binding. Inhibition of the expression of p38, ERK, JNK, and NF-κB by pharmacological inhibitors reversed sappanchalcone-induced growth inhibition and apoptosis. These results provide the first evidence that Sappanchalcone suppresses oral cancer cell growth and induces apoptosis through the activation of p53-dependent mitochondrial, p38, ERK, JNK, and NF-κB signaling. Thus, it has potential as a chemotherapeutic agent for oral cancer.

Anti-inflammatory activity of Sappanchalcone isolated from Caesalpinia sappan L. in a collagen-induced arthritis mouse model

Arch Pharm Res 2015 Jun;38(6):973-83.PMID:25586964DOI:10.1007/s12272-015-0557-z.

Sappanchalcone, a bioactive flavonoid isolated from the heartwood of Caesalpinia sappan L. possesses anti-inflammatory effects. We studied the efficacy of Sappanchalcone in attenuating collagen-induced arthritis (CIA) in a mouse model of rheumatoid arthritis. Sappanchalcone was purified to homogeneity from the chloroform fraction of the methanolic extract of C. sappan, and identified using mass spectrometry and (1)H-nuclear magnetic resonance spectroscopy. CIA-induced male DBA/1J mice were divided into control, sappanchalcone-treated, and methotrexate-treated groups (n = 10 per group). Paw swelling, arthritis severity, radiographic and histomorphometric changes were assessed to measure the protective role of Sappanchalcone against chronic disease progression. Sappanchalcone administration significantly reduced clinical arthritis and inflammatory edema in paws. Bone mineral density and trabecular structure were maintained in CIA mice administered Sappanchalcone. The levels of pro-inflammatory cytokines (TNF-α, IL-6, and 1L-1β) were significantly lower in the serum of sappanchalcone-treated mice as compared with the control group. Our results suggest that Sappanchalcone could be used as an anti-inflammatory and bone-protective agent during the treatment of rheumatoid arthritis.

Effects of Sappanchalcone on the cytoprotection and anti-inflammation via heme oxygenase-1 in human pulp and periodontal ligament cells

Eur J Pharmacol 2010 Oct 10;644(1-3):230-7.PMID:20621084DOI:10.1016/j.ejphar.2010.06.059.

Sappanchalcone has been demonstrated to possess several biological effects. However, the molecular mechanism underlying these effects is not fully understood. In this study, we examined the effects of Sappanchalcone on hydrogen peroxide (H(2)O(2))-induced cytotoxicity using human dental pulp (HDP) cells, and lipopolysaccharide (LPS)-induced inflammation using human periodontal ligament (HPDL) cells. Sappanchalone concentration proportionately increased heme oxygenase (HO)-1 protein expression and enzyme activity in both HDP and HPDL cells. It also protected HDP cells from H(2)O(2)-induced cytotoxicity and reactive oxygen species production. The cytoprotective effect of Sappanchalcone was nullified by HO-1 inhibitor, Tin protoporphyrin (SnPP). Sappanchalcone is seen to inhibit LPS-stimulated nitric oxide (NO), prostaglandin E(2) (PGE(2)), interlukine-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha), interlukine-6 (IL-6) and interlukine-12 (IL-12) release in addition to inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in HPDL cells. SnPP, a specific inhibitor of HO-1, partly blocked Sappanchalcone mediated suppression of inflammatory mediator production, in LPS-stimulated HPDL cells. HDP and HPDL cells treated with Sappanchalcone exhibited the transient activation of c-Jun NH2-terminal kinase (JNK) and NF-E2-related factor-2 (Nrf2). The expression of HO-1 protein by Sappanchalcone was significantly reduced by pretreatment with JNK inhibitor. In conclusion, induction of HO-1 is an important cytoprotective mechanism by which Sappanchalcone protects HDP cells from H(2)O(2) and in addition it also exhibits anti-inflammatory effects in LPS-stimulated HPDL cells. Thus, Sappanchalcone could potentially be a therapeutic approach for periodontal, pulpal and periapical inflammatory lesion.

Anxiolytic effect of the heartwood of Haematoxylum campechianum L. and Sappanchalcone in an in vivo model in mice

J Ethnopharmacol 2022 Feb 10;284:114764.PMID:34687835DOI:10.1016/j.jep.2021.114764.

Ethnopharmacological relevance: Haematoxylum campechianum L., is a well-known plant in the southeast region of Mexico, where it is named as "palo tinto" or "palo de Campeche", in English there are vernacular names such as "redwood", "bloodwood tree" or "campeachy wood". Traditional medicine refers its use for the treatment of different disorders including depression. Aim of the study: Considering the traditional use of this plant for the alleviation of depression, the aim of this study was the evaluation of the anxiolytic effect of the methanolic and hydroalcoholic extracts from the heartwood of Haematoxylum campechianum L., and the sappanchalchone (Sapp). Additionally, it is presented the characterization of the new compound 4-hydroxyhematoxylol (2) isolated from the hydroalcoholic extract. Material and methods: The anxiolytic effect of the extracts and Sapp was evaluated by using the Elevated Plus Maze (EPM) additionally the sedative effect was assessed with the Open Field Test (OFT). The chemical characterization of Sapp and 2 was performing by 1D and 2D NMR experiments. Results: The EPM test showed that the administration of the plant extracts increased the percentage of time spent in open arms (76.32 ± 6.35 and 66.68 ± 20.64%, respectively for the methanolic and hydroalcoholic extracts), whereas the administration of Sapp increased the percentage of time spent in open arms by 60.07 ± 14.28%, these results are similar to Diazepam (DZP, positive control) which caused an increment of 74.06 ± 23.42%. For the OFT, all of the doses evaluated for both extracts and Sapp diminished the number of rearing (R) and total corssing (TC) behavior in a similar way to the positive control (DZO) and statistically different with respect to the vehicle. Conclusion: The results obtained showed that the polar extracts from the heartwood of Haematoxylum campechianum L. possess both anxiolytic and sedative effect and that the chalcone-type compound Sapp, isolated from the methanolic extract, is partially responsible of these activities.