Home>>Signaling Pathways>> Membrane Transporter/Ion Channel>> TRP Channel>>SAR7334

SAR7334 Sale

目录号 : GC33424

A TRPC6 channel blocker

SAR7334 Chemical Structure

Cas No.:1333210-07-3

规格 价格 库存 购买数量
10mM (in 1mL DMSO)
¥1,980.00
现货
5mg
¥1,800.00
现货
10mg
¥2,880.00
现货
50mg
¥6,480.00
现货
100mg
¥8,100.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

SAR7334 is a transient receptor potential canonical 6 (TRPC6) channel blocker (IC50 = 7.9 nM).1 It is selective for TRPC6 over TRPC4 and TRPC5 (IC50s = 282 and 226 nM, respectively). SAR7334 (0.2-1 μM) blocks TRPC6-dependent hypoxia-induced vasoconstriction in isolated perfused and ventilated mouse lung. It also inhibits oxidative stress-induced apoptosis and increases autophagic flux in primary mouse renal proximal tubule cells.2

1.Maier, T., Follmann, M., Hessler, G., et al.Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channelsBr. J. Pharmacol.172(14)3650-3660(2015) 2.Hou, X., Xiao, H., Zhang, Y., et al.Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activationCell Death Dis.9(10)1015(2018)

Chemical Properties

Cas No. 1333210-07-3 SDF
Canonical SMILES N[C@@H](C1)CCCN1[C@@H]2CC3=CC=CC=C3[C@H]2OC4=C(Cl)C=C(C#N)C=C4
分子式 C21H22ClN3O 分子量 367.87
溶解度 DMSO : ≥ 370 mg/mL (1005.79 mM) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.7184 mL 13.5918 mL 27.1835 mL
5 mM 0.5437 mL 2.7184 mL 5.4367 mL
10 mM 0.2718 mL 1.3592 mL 2.7184 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Discovery and pharmacological characterization of a novel potent inhibitor of diacylglycerol-sensitive TRPC cation channels

Br J Pharmacol 2015 Jul;172(14):3650-60.PMID:25847402DOI:10.1111/bph.13151.

Background and purpose: The cation channel transient receptor potential canonical (TRPC) 6 has been associated with several pathologies including focal segmental glomerulosclerosis, pulmonary hypertension and ischaemia reperfusion-induced lung oedema. We set out to discover novel inhibitors of TRPC6 channels and investigate the therapeutic potential of these agents. Experimental approach: A library of potential TRPC channel inhibitors was designed and synthesized. Activity of the compounds was assessed by measuring intracellular Ca(2+) levels. The lead compound SAR7334 was further characterized by whole-cell patch-clamp techniques. The effects of SAR7334 on acute hypoxic pulmonary vasoconstriction (HPV) and systemic BP were investigated. Key results: SAR7334 inhibited TRPC6, TRPC3 and TRPC7-mediated Ca(2+) influx into cells with IC50 s of 9.5, 282 and 226 nM, whereas TRPC4 and TRPC5-mediated Ca(2+) entry was not affected. Patch-clamp experiments confirmed that the compound blocked TRPC6 currents with an IC50 of 7.9 nM. Furthermore, SAR7334 suppressed TRPC6-dependent acute HPV in isolated perfused lungs from mice. Pharmacokinetic studies of SAR7334 demonstrated that the compound was suitable for chronic oral administration. In an initial short-term study, SAR7334 did not change mean arterial pressure in spontaneously hypertensive rats (SHR). Conclusions and implications: Our results confirm the role of TRPC6 channels in hypoxic pulmonary vasoregulation and indicate that these channels are unlikely to play a major role in BP regulation in SHR. SAR7334 is a novel, highly potent and bioavailable inhibitor of TRPC6 channels that opens new opportunities for the investigation of TRPC channel function in vivo.

Ameliorated biomechanical properties of carotid arteries by puerarin in spontaneously hypertensive rats

BMC Complement Med Ther 2021 Jun 22;21(1):173.PMID:34154575DOI:10.1186/s12906-021-03345-8.

Background: An emerging body of evidence indicates that puerarin (PUE) plays an important role in the treatment of angina pectoris, myocardial ischemia-reperfusion injury, hypertension and other cardiovascular diseases, but how PUE affects the vascular remodeling of hypertensive rats has not been reported yet. This study aimed to investigate the effect and mechanism of PUE on carotid arteries of spontaneously hypertensive rats (SHR) to provide the basis for the clinical application of PUE. Methods: Thirty male SHR and six male Wistar Kyoto rats (WKY) aged 3 months were used in this study, SHR rats were randomly divided into 5 groups, PUE(40 or 80 mg/kg/d, ip) and telmisartan (TELMI) (30 mg/kg/d, ig) were administrated for 3 months. We use DMT myography pressure-diameter system to investigate biomechanical properties of carotid arteries, 10 μM pan-classical transient receptor potential channels (TRPCs) inhibitor SKF96365, 200 nM specific TRPC6 inhibitor SAR7334 and 100 μM Orai1 inhibitor ANCOA4 were used in the mechanical test. Results: PUE can significantly decrease systolic and diastolic blood pressure, long-term administration of PUE resulted in a mild reduction of thickness and inner diameter of carotid artery. PUE ameliorate NE-response and vascular remodeling mainly through inhibiting TRPCs channel activities of VSMC. Conclusion: PUE can ameliorate biomechanical remodeling of carotid arteries through inhibiting TRPCs channel activities of VSMC in spontaneously hypertensive rats.

TRPC6 inhibits renal tubular epithelial cell pyroptosis through regulating zinc influx and alleviates renal ischemia-reperfusion injury

FASEB J 2022 Oct;36(10):e22527.PMID:36036542DOI:10.1096/fj.202200109RR.

Canonical transient receptor potential-6 (TRPC6) has been reported to be involved in cell damage after ischemia/reperfusion (I/R) injury in target organs. While the effect and of TRPC6 on pyroptosis in renal I/R injury remain unclear. In our study, we first established the renal I/R mouse model and oxygen-glucose deprivation and re-oxygenation (OGD/R) cell model, and investigated the impacts of TRPC6 on the pyroptosis-related proteins using CCK-8, western blot, ELISA, and immunofluorescence probes. Besides, we also explored the mechanism of TRPC6 in pyroptosis of renal tubular epithelial cells through A20 knockdown or overexpression and zinc chloride (ZnCl2 ) or a zinc ion chelator (TPEN) treatment. Our results indicated that I/R injury could cause downregulation of TRPC6 both in vivo and in vitro. In the I/R injury murine model, TRPC6 inhibition exacerbated tissue damage and upregulated NLRP3, ASC, caspase-1, IL-18, and IL-1β, which could be alleviated by the administration of ZnCl2 . In the OGD/R cell model, inhibitor of TRPC6 (SAR7334) reduced zinc ion influx, aggravated cell death and upregulated pyroptosis-related protein. The pyroptosis phenotype also could be alleviated by ZnCl2 and intensified by TPEN. Overexpression of A20 reduced the expression of pyroptosis-related protein, increased cell viability in the sh-TRPC6 and TPEN-treated OGD/R cell models, while A20 deficiency impaired the protective effect of zinc ion. Therefore, our results indicate that TRPC6 could promote zinc ion influx in renal tubular epithelial cells, thereby upregulating intracellular A20, inhibiting the activation of inflammasome NLRP3, and ultimately attenuating renal I/R injury.

Transient Receptor Potential Cation Channels and Calcium Dyshomeostasis in a Mouse Model Relevant to Malignant Hyperthermia

Anesthesiology 2020 Aug;133(2):364-376.PMID:32665491DOI:10.1097/ALN.0000000000003387.

Background: Until recently, the mechanism for the malignant hyperthermia crisis has been attributed solely to sustained massive Ca release from the sarcoplasmic reticulum on exposure to triggering agents. This study tested the hypothesis that transient receptor potential cation (TRPC) channels are important contributors to the Ca dyshomeostasis in a mouse model relevant to malignant hyperthermia. Methods: This study examined the mechanisms responsible for Ca dyshomeostasis in RYR1-p.G2435R mouse muscles and muscle cells using calcium and sodium ion selective microelectrodes, manganese quench of Fura2 fluorescence, and Western blots. Results: RYR1-p.G2435R mouse muscle cells have chronically elevated intracellular resting calcium and sodium and rate of manganese quench (homozygous greater than heterozygous) compared with wild-type muscles. After exposure to 1-oleoyl-2-acetyl-sn-glycerol, a TRPC3/6 activator, increases in intracellular resting calcium/sodium were significantly greater in RYR1-p.G2435R muscles (from 153 ± 11 nM/10 ± 0.5 mM to 304 ± 45 nM/14.2 ± 0.7 mM in heterozygotes P < 0.001] and from 251 ± 25 nM/13.9 ± 0.5 mM to 534 ± 64 nM/20.9 ± 1.5 mM in homozygotes [P < 0.001] compared with 123 ± 3 nM/8 ± 0.1 mM to 196 ± 27 nM/9.4 ± 0.7 mM in wild type). These increases were inhibited both by simply removing extracellular Ca and by exposure to either a nonspecific (gadolinium) or a newly available, more specific pharmacologic agent (SAR7334) to block TRPC6- and TRPC3-mediated cation influx into cells. Furthermore, local pretreatment with SAR7334 partially decreased the elevation of intracellular resting calcium that is seen in RYR1-p.G2435R muscles during exposure to halothane. Western blot analysis showed that expression of TRPC3 and TRPC6 were significantly increased in RYR1-p.G2435R muscles in a gene-dose-dependent manner, supporting their being a primary molecular basis for increased sarcolemmal cation influx. Conclusions: Muscle cells in knock-in mice expressing the RYR1-p.G2435R mutation are hypersensitive to TRPC3/6 activators. This hypersensitivity can be negated with pharmacologic agents that block TRPC3/6 activity. This reinforces the working hypothesis that transient receptor potential cation channels play a critical role in causing intracellular calcium and sodium overload in malignant hyperthermia-susceptible muscle, both at rest and during the malignant hyperthermia crisis.

Pharmacological Characterization of the Native Store-Operated Calcium Channels of Cortical Neurons from Embryonic Mouse Brain

Front Pharmacol 2016 Dec 12;7:486.PMID:28018223DOI:10.3389/fphar.2016.00486.

In the murine brain, the first post-mitotic cortical neurons formed during embryogenesis express store-operated channels (SOCs) sensitive to Pyr3, initially proposed as a blocker of the transient receptor potential channel of C type 3 (TRPC3 channel). However, Pyr3 does not discriminate between Orai and TRPC3 channels, questioning the contribution of TRPC3 in SOCs. This study was undertaken to clarify the molecular identity and the pharmacological profile of native SOCs from E13 cortical neurons. The mRNA expression of STIM1-2 and Orai1-3 was assessed by quantitative reverse transcription polymerase chain reaction. E13 cortical neurons expressed STIM1-2 mRNAs, with STIM2 being the predominant isoform. Only transcripts of Orai2 were found but no Orai1 and Orai3 mRNAs. Blockers of Orai and TRPC channels (Pyr6, Pyr10, EVP4593, SAR7334, and GSK-7975A) were used to further characterize the endogenous SOCs. Their activity was recorded using the fluorescent Ca2+ probe Fluo-4. Cortical SOCs were sensitive to the Orai blockers Pyr6 and GSK-7975A, as well as to EVP4593, zinc, copper, and gadolinium ions, the latter one being the most potent SOCs blocker tested (IC50 ∼10 nM). SOCs were insensitive to the TRPC channel blockers Pyr10 and SAR7334. In addition, preventing mitochondrial Ca2+ uptake inhibited SOCs which were unaffected by inhibitors of the Ca2+-independent phospholipase A2. Altogether, Orai2 channels are present at the beginning of the embryonic murine cortico-genesis and form the core component of native SOCs in the immature cortex. This Ca2+ route is likely to play a role in the formation of the brain cortex.