Home>>Signaling Pathways>> Cancer Biology>>Sartorypyrone A

Sartorypyrone A Sale

(Synonyms: 20-O-Acetyl Sartorypyrone D) 目录号 : GC44873

A fungal metabolite

Sartorypyrone A Chemical Structure

Cas No.:1452396-10-9

规格 价格 库存 购买数量
500μg
¥2,827.00
现货
1mg
¥5,088.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Sartorypyrone A is a meroditerpene metabolite produced by Neosartorya fungal species. It inhibits the growth of MCF-7 breast, NCI-H460 lung, and A375-C5 melanoma cancer cell lines (GI50s = 46.3, 37.3, and 21.5 μM, respectively). Sartorypyrone A inhibits growth of Gram-positive bacteria, including multidrug-resistant S. aureus (MIC = 32 μg/ml), and reduces the mass of S. aureus and B. subtilis biofilms in vitro.

Chemical Properties

Cas No. 1452396-10-9 SDF
别名 20-O-Acetyl Sartorypyrone D
Canonical SMILES CC(O1)=CC(O)=C(C/C=C(C)/CC/C=C(C)/CC[C@H]2C(C)(C)[C@@H](OC(C)=O)CCC2=C)C1=O
分子式 C28H40O5 分子量 456.6
溶解度 DMF: soluble,DMSO: soluble,Ethanol: soluble,Methanol: soluble 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 2.1901 mL 10.9505 mL 21.901 mL
5 mM 0.438 mL 2.1901 mL 4.3802 mL
10 mM 0.219 mL 1.0951 mL 2.1901 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Orthogonal Method for Double-Bond Placement via Ozone-Induced Dissociation Mass Spectrometry (OzID-MS)

J Nat Prod 2019 Dec 27;82(12):3421-3431.PMID:31823607DOI:10.1021/acs.jnatprod.9b00787.

Most often, the structures of secondary metabolites are solved using a suite of NMR techniques. However, there are times when it can be challenging to position double bonds, particularly those that are fully substituted or when there are multiple double bonds in similar chemical environments. Ozone-induced dissociation mass spectrometry (OzID-MS) serves as an orthogonal structure elucidation tool, using predictable fragmentation patterns that are generated after ozonolysis across a carbon-carbon double bond. This technique is finding growing use in the lipidomics community, suggestive of its potential value for secondary metabolites. This methodology was evaluated by confirming the double-bond positions in five fungal secondary metabolites, specifically, ent-sartorypyrone E (1), Sartorypyrone A (2), sorbicillin (3), trichodermic acid A (4), and AA03390 (5). This demonstrated its potential with a variety of chemotypes, ranging from polyketides to terpenoids and including those in both conjugated and nonconjugated polyenes. In addition, the potential of using this methodology in the context of a mixture was piloted by studying Aspergillus fischeri, first examining a traditional extract and then sampling a live fungal culture in situ. While the intensity of signals varied from pure compound to extract to in situ, the utility of the technique was preserved.

Antibacterial and antibiofilm activities of tryptoquivalines and meroditerpenes isolated from the marine-derived fungi Neosartorya paulistensis, N. laciniosa, N. tsunodae, and the soil fungi N. fischeri and N. siamensis

Mar Drugs 2014 Jan 28;12(2):822-39.PMID:24477284DOI:10.3390/md12020822.

A new meroditerpene, sartorypyrone C (5), was isolated, together with the known tryptoquivalines L (1a), H (1b), F (1c), 3'-(4-oxoquinazolin-3-yl) spiro [1H-indole-3,5']-2,2'-dione (2) and 4(3H)-quinazolinone (3), from the culture of the marine sponge-associated fungus Neosartorya paulistensis (KUFC 7897), while reexamination of the fractions remaining from a previous study of the culture of the diseased coral-derived fungus N. laciniosa (KUFC 7896) led to isolation of a new tryptoquivaline derivative tryptoquivaline T (1d). Compounds 1a-d, 2, 3, and 5, together with aszonapyrones A (4a) and B (4b), chevalones B (6) and C (7a), sartorypyrones B (7b) and A (8), were tested for their antibacterial activity against four reference strains (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa), as well as the environmental multidrug-resistant isolates. Only aszonapyrone A (4a) and Sartorypyrone A (8) exhibited significant antibacterial activity as well as synergism with antibiotics against the Gram-positive multidrug-resistant strains. Antibiofilm assays of aszonapyrone A (4a) and Sartorypyrone A (8) showed that practically no biofilm was formed in the presence of their 2× MIC and MIC. However, the presence of a sub-inhibitory concentration of ½ MIC of 4a and 8 was found to increase the biofilm production in both reference strain and the multidrug-resistant isolates of S. aureus.