SC99
目录号 : GC61269SC99 is an orally active, selective STAT3 inhibitor targeting JAK2-STAT3 pathway by docking into the ATP-binding pocket of JAK2, also inhibits phosphorylation of JAK2and STAT3 with no effects on the other kinases associated with STAT3 signaling.
Cas No.:882290-02-0
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
SC99 is an orally active, selective STAT3 inhibitor targeting JAK2-STAT3 pathway by docking into the ATP-binding pocket of JAK2, also inhibits phosphorylation of JAK2and STAT3 with no effects on the other kinases associated with STAT3 signaling.
[1] Zhang Z, et al. Oncotarget. 2016 Feb 23;7(8):9296-308. [2] Xu Z, et al. Acta Pharmacol Sin. 2017 May;38(5):651-659.
Cas No. | 882290-02-0 | SDF | |
Canonical SMILES | N#C/C(C(C1=CC=C(Cl)C=C1)=O)=N\NC2=CC=C(F)C(Cl)=C2 | ||
分子式 | C15H8Cl2FN3O | 分子量 | 336.15 |
溶解度 | DMSO: 83.33 mg/mL (247.90 mM); Water: < 0.1 mg/mL (insoluble) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.9749 mL | 14.8743 mL | 29.7486 mL |
5 mM | 0.595 mL | 2.9749 mL | 5.9497 mL |
10 mM | 0.2975 mL | 1.4874 mL | 2.9749 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Effects of SC99 on cerebral ischemia-perfusion injury in rats: Selective modulation of microglia polarization to M2 phenotype via inhibiting JAK2-STAT3 pathway
Neurosci Res 2019 May;142:58-68.PMID:29763638DOI:10.1016/j.neures.2018.05.002.
Inhibition of Janus kinases 2-Signal transducers and activators of transcription3 (JAK2-STAT3) pathway has been shown to exert anti-inflammatory actions. SC99, a novel specific inhibitor targeting JAK2-STAT3 pathway, has been verified to negatively modulate platelet activation and aggregation in vitro. In current study, a middle cerebral artery occlusion and reperfusion (MCAO/R) model was established in Sprague Dawley rats and primary cultured microglia was exposed to oxygen and glucose deprivation (OGD/R) in vitro. Different dosages were employed to detect the effects of SC99 on cerebral ischemia-perfusion (I/R) injury and evaluate the underlying mechanisms. Our results showed that intracerebroventricular injection of SC99 (10 mmol/L, 15 μL) produced an effective inhibitory effect on the phosphorylation of JAK2 and STAT3. Correspondingly, SC99 ameliorated neuronal apoptosis and degeneration, neurobehavioral deficits, inflammatory response and brain edema. And SC99 promoted microglia polarization to an anti-inflammatory M2 phenotype. We concluded that SC99 could alleviate brain damage and play an anti-inflammatory action by promoting microglia polarization to an anti-inflammatory phenotype after I/R injury, which provides an emerging and promising alternative to protect the brain against MCAO/R injury in the future investigations.
A novel STAT3 inhibitor negatively modulates platelet activation and aggregation
Acta Pharmacol Sin 2017 May;38(5):651-659.PMID:28260800DOI:10.1038/aps.2016.155.
The signal transducer and activator of transcription 3 (STAT3) plays a critical role in platelet functions. This study sought to understand the effects of the STAT3 inhibitor SC99 on platelet activation and aggregation. Immunoblotting assays were applied to measure the effects of SC99 on the STAT3 signaling pathway. A ChronoLog aggregometer was used to evaluate platelet aggregation. A flow cytometer was used to evaluate P-selectin expression in the presence of SC99. AlamarBlue and Annexin-V staining were used to evaluate platelet viability and apoptosis, respectively. A fluorescence microscope was applied to analyze platelet spreading. SC99 inhibited the phosphorylation of JAK2 and STAT3 in human platelets but had no effects on the phosphorylation of AKT, p65 or Src, all of which are involved in platelet activation. Further studies revealed that SC99 inhibited human platelet aggregation induced by collagen and thrombin in a dose-dependent manner. SC99 inhibited thrombin-induced P-selectin expression and fibrinogen binding to single platelets. Moreover, SC99 inhibited platelet spreading on fibrinogen and clot retraction mediated by outside-in signaling. SC99 inhibited platelet aggregation in mice but it did not significantly prolong the bleeding time. Taken together, the present study revealed that SC99 inhibited platelet activation and aggregation as a STAT3 inhibitor. This agent can be developed as a promising treatment for thrombotic disorders.
A novel small molecule agent displays potent anti-myeloma activity by inhibiting the JAK2-STAT3 signaling pathway
Oncotarget 2016 Feb 23;7(8):9296-308.PMID:26814430DOI:10.18632/oncotarget.6974.
The oncogenic STAT3 signaling pathway is emerging as a promising target for the treatment of multiple myeloma (MM). In the present study, we identified a novel STAT3 inhibitor SC99 in a target-based high throughput screen. SC99 inhibited JAK2-STAT3 activation but had no effects on other transcription factors such as NF-κB, and kinases such as AKT, ERK, and c-Src that are in association with STAT3 signaling pathway. Furthermore, SC99 downregulated the expression of STAT3-modulated genes, including Bcl-2, Bcl-xL, VEGF, cyclin D2, and E2F-1. By inhibiting the STAT3 signaling, SC99 induced MM cell apoptosis which could be partly abolished by the ectopic expression of STAT3. Furthermore, SC99 displayed potent anti-MM activity in two independent MM xenograft models in nude mice. Oral administration of SC99 led to marked decrease of tumor growth within 10 days at a daily dosage of 30 mg/kg, but did not raise toxic effects. Taken together, this study identified a novel oral JAK2/STAT3 inhibitor that could be developed as an anti-myeloma agent.
Astragaloside IV Protects 6-Hydroxydopamine-Induced SH-SY5Y Cell Model of Parkinson's Disease via Activating the JAK2/STAT3 Pathway
Front Neurosci 2021 Mar 23;15:631501.PMID:33833662DOI:10.3389/fnins.2021.631501.
Objectives: Astragaloside IV (AS-IV), the main active component of Astragalus membranaceus, bears anti-inflammatory, antioxidant, and neuroprotective activity. Parkinson's disease (PD) is a common neurodegenerative disease. This study explored the protective effect of AS-IV on the cell model of PD. Materials and methods: SH-SY5Y cells were incubated with different concentrations (10, 50, 100, 150, and 200 μM) of 6-hydroxydopamine (6-OHDA) for 0, 3, 6, 12, 24, and 48 h to establish the PD cell model. Different concentrations (0, 25, 50, 100, 150, and 200 μM) of AS-IV or 15 mM JAK2/STAT3 pathway inhibitor SC99 was added for intervention 2 h before 6-OHDA treatment. The viability and morphological damage of 6-OHDA-treated SH-SY5Y cells were measured using MTT assay and Hoechst 33258 staining. The expression of microtubule associated protein 2 (MAP2) was detected by immunofluorescence staining. The levels of inflammation and oxidative stress were measured using ELISA. Apoptosis of 6-OHDA-treated SH-SY5Y cells was detected using flow cytometry, and phosphorylation level of JAK2 and STAT3 were detected using Western blot analysis. Results: The survival rate of SH-SY5Y cells treated with 100 μM 6-OHDA for 24 h was about 50%. AS-IV (25-100 μM) significantly improved the viability (all p < 0.01), increased MAP2 expression, and repaired the morphological damage induced by 6-OHDA. AS-IV inhibited IL-1β, IL-6, and TNF-α level (all p < 0.05), reduced MDA and ROS content and increased SOD concentration, thereby reducing inflammation and oxidative stress (all p < 0.01) in 6-OHDA-treated SH-SY5Y cells. Moreover, AS-IV decreased apoptosis rate and Bax/Bcl-2 ratio induced by 6-OHDA (all p < 0.05). Mechanically, AS-IV significantly increased the phosphorylation of JAK2 and STAT3 (p < 0.01); the addition of SC99 decreased the cell viability, increased the apoptosis rate, enhanced the levels of inflammatory factors and oxidative stress. Conclusion: AS-IV enhanced the cell viability, and inhibited apoptosis, inflammation and oxidative stress of 6-OHDA-treated SH-SY5Y cells via activating the JAK2/STAT3 signaling pathway. This study may confer novel insights for the management of PD.
Activation of a cryptic 5' splice site in the upstream exon of the phage T4 td transcript: exon context, missplicing, and mRNA deletion in a fidelity mutant
Genes Dev 1987 Nov;1(9):1028-37.PMID:3322941DOI:10.1101/gad.1.9.1028.
A collection of 100 td mutants defective in phage T4 thymidylate synthase (TS) production was screened for splicing impairments. Splicing-defective mutants were identified by a rapid assay developed to detect imbalances in the td protein products (TS, the exon ligation product, and NH2TS, encoded by the pre-mRNA). Thirteen selected mutants, confirmed to be splicing defective by an RNA-oligodeoxynucleotide hybridization assay, were all shown to be inhibited in the first step of the group I splicing pathway, cleavage at the 5' splice site. Of these, only one, SC99, appeared to be a specificity mutant. Whereas the 12 other mutants had sequence changes within the functionally important 5' and 3' domains of the intron, SC99 was shown to be an exon mutant. The G----A change at residue -3 of the upstream exon of SC99 resulted in loss of normal 5' splice site recognition. Furthermore, activation of a remote cryptic splice site at residue -29 of the upstream exon and missplicing of mRNA that is deleted for 29 nucleotides of the 5' exon are characteristic for this mutant. These results underscore the role of exon sequences in guiding the fidelity of the splicing reaction and they raise provocative questions about the alignment of introns within exon contexts that are consistent with accurate splicing and synthesis of an intact gene product.