Selicrelumab
(Synonyms: 塞鲁单抗) 目录号 : GC65512Selicrelumab 是一种 CD40 抗体激动剂,可诱导肿瘤微环境的变化。Selicrelumab 可用于胰腺癌的研究和肿瘤新辅助疗法研究。
Cas No.:1622140-49-1
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
-
Purity: >98.00%
- SDS (Safety Data Sheet)
- Datasheet
Selicrelumab is an agonist CD40 antibody, induces changes in the tumor microenvironment. Selicrelumab can be used for the research of pancreatic cance and neoadjuvant study[1].
[1]. Katelyn T Byrne, Neoadjuvant Selicrelumab, an Agonist CD40 Antibody, Induces Changes in the Tumor Microenvironment in Patients with Resectable Pancreatic Cancer. Clin Cancer Res. 2021 Aug 15;27(16):4574-4586.
Cas No. | 1622140-49-1 | SDF | Download SDF |
别名 | 塞鲁单抗 | ||
分子式 | 分子量 | ||
溶解度 | 储存条件 | Store at -20°C | |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Neoadjuvant Selicrelumab, an Agonist CD40 Antibody, Induces Changes in the Tumor Microenvironment in Patients with Resectable Pancreatic Cancer
Clin Cancer Res 2021 Aug 15;27(16):4574-4586.PMID:34112709DOI:10.1158/1078-0432.CCR-21-1047.
Purpose: CD40 activation is a novel clinical opportunity for cancer immunotherapy. Despite numerous active clinical trials with agonistic CD40 monoclonal antibodies (mAb), biological effects and treatment-related modulation of the tumor microenvironment (TME) remain poorly understood. Patients and methods: Here, we performed a neoadjuvant clinical trial of agonistic CD40 mAb (Selicrelumab) administered intravenously with or without chemotherapy to 16 patients with resectable pancreatic ductal adenocarcinoma (PDAC) before surgery followed by adjuvant chemotherapy and CD40 mAb. Results: The toxicity profile was acceptable, and overall survival was 23.4 months (95% confidence interval, 18.0-28.8 months). Based on a novel multiplexed immunohistochemistry platform, we report evidence that neoadjuvant Selicrelumab leads to major differences in the TME compared with resection specimens from treatment-naïve PDAC patients or patients given neoadjuvant chemotherapy/chemoradiotherapy only. For selicrelumab-treated tumors, 82% were T-cell enriched, compared with 37% of untreated tumors (P = 0.004) and 23% of chemotherapy/chemoradiation-treated tumors (P = 0.012). T cells in both the TME and circulation were more active and proliferative after Selicrelumab. Tumor fibrosis was reduced, M2-like tumor-associated macrophages were fewer, and intratumoral dendritic cells were more mature. Inflammatory cytokines/sec CXCL10 and CCL22 increased systemically after Selicrelumab. Conclusions: This unparalleled examination of CD40 mAb therapeutic mechanisms in patients provides insights for design of subsequent clinical trials targeting CD40 in cancer.
Agonistic CD40 Antibodies in Cancer Treatment
Cancers (Basel) 2021 Mar 15;13(6):1302.PMID:33804039DOI:10.3390/cancers13061302.
CD40 is expressed on a variety of antigen-presenting cells. Stimulation of CD40 results in inflammation by upregulation of other costimulatory molecules, increased antigen presentation, maturation (licensing) of dendritic cells, and activation of CD8+ T cells. Here we analyzed gene expression data from The Cancer Genome Atlas in melanoma, renal cell carcinoma, and pancreatic adenocarcinoma and found correlations between CD40 and several genes involved in antigen presentation and T cell function, supporting further exploration of CD40 agonists to treat cancer. Agonist CD40 antibodies have induced anti-tumor effects in several tumor models and the effect has been more pronounced when used in combination with other treatments (immune checkpoint inhibition, chemotherapy, and colony-stimulating factor 1 receptor inhibition). The reduction in tumor growth and ability to reprogram the tumor microenvironment in preclinical models lays the foundation for clinical development of agonistic CD40 antibodies (APX005M, ChiLob7/4, ADC-1013, SEA-CD40, Selicrelumab, and CDX-1140) that are currently being evaluated in early phase clinical trials. In this article, we focus on CD40 expression and immunity in cancer, agonistic human CD40 antibodies, and their pre-clinical and clinical development. With the broad pro-inflammatory effects of CD40 and its ligand on dendritic cells and macrophages, and downstream B and T cell activation, agonists of this pathway may enhance the anti-tumor activity of other systemic therapies.
Co-Stimulatory versus Cell Death Aspects of Agonistic CD40 Monoclonal Antibody Selicrelumab in Chronic Lymphocytic Leukemia
Cancers (Basel) 2021 Jun 21;13(12):3084.PMID:34205588DOI:10.3390/cancers13123084.
Objectives: Chronic lymphocytic leukemia (CLL) is a common form of leukemia with a heterogeneous clinical course that remains incurable due to the development of therapy resistance. In lymph node proliferation centers, signals from the microenvironment such as CD40 ligation through interaction with follicular T helper cells shield CLL cells from apoptosis. Previous observations have shown that, despite CD40-induced changes in apoptotic mediators resulting in cell survival, CD40 activation also increases sensitivity to cell death by CD20 mAbs rituximab and obinutuzumab. To further investigate these observations, we here studied the activity of the fully human agonistic CD40 mAb Selicrelumab in primary CLL cells in relation to cell activation, induced pro-survival profile, and sensitization for cell death by aCD20 mAbs, in vitro. Methods: CLL cells from peripheral blood were isolated by the Ficoll density method. The expression of activation markers and cytokine production following CD40 stimulation was quantified by flow cytometry and ELISA. The anti-apoptotic profile of CLL induced by stimulation was evaluated by the expression of BCL-2 proteins with Western blot, and resistance to venetoclax with flow cytometry. Cell death induced by the combination of Selicrelumab and aCD20 mAbs was quantified by flow cytometry. Results: CLL cells treated with Selicrelumab upregulated co-stimulatory molecules such as CD86, TNF-α and death receptor CD95/Fas. In contrast to the CD40 ligand-transfected NIH3T3 cells, induction of resistance to venetoclax by Selicrelumab was very moderate. Importantly, Selicrelumab stimulation positively sensitized CLL cells to CD20-induced cell death, comparable to CD40 ligand-transfected NIH3T3 cells. Conclusions: Taken together, these novel insights into selicrelumab-stimulatory effects in CLL may be considered for developing new therapeutic strategies, particularly in combination with obinutuzumab.
Phase Ib study of anti-CSF-1R antibody emactuzumab in combination with CD40 agonist Selicrelumab in advanced solid tumor patients
J Immunother Cancer 2020 Oct;8(2):e001153.PMID:33097612DOI:10.1136/jitc-2020-001153.
Background: This phase Ib study evaluated the safety, clinical activity, pharmacokinetics, and pharmacodynamics (PD) of emactuzumab (anti-colony stimulating factor 1 receptor monoclonal antibody (mAb)) in combination with Selicrelumab (agonistic cluster of differentiation 40 mAb) in patients with advanced solid tumors. Methods: Both emactuzumab and Selicrelumab were administered intravenously every 3 weeks and doses were concomitantly escalated (emactuzumab: 500 to 1000 mg flat; Selicrelumab: 2 to 16 mg flat). Dose escalation was conducted using the product of independent beta probabilities dose-escalation design. PD analyzes were performed on peripheral blood samples and tumor/skin biopsies at baseline and on treatment. Clinical activity was evaluated using investigator-based and Response Evaluation Criteria In Solid Tumors V.1.1-based tumor assessments. Results: Three dose-limiting toxicities (all infusion-related reactions (IRRs)) were observed at 8, 12 and 16 mg of Selicrelumab together with 1000 mg of emactuzumab. The maximum tolerated dose was not reached at the predefined top doses of emactuzumab (1000 mg) and Selicrelumab (16 mg). The most common adverse events were IRRs (75.7%), fatigue (54.1%), facial edema (37.8%), and increase in aspartate aminotransferase and creatinine phosphokinase (35.1% both). PD analyzes demonstrated an increase of Ki67+-activated CD8+ T cells accompanied by a decrease of B cells and the reduction of CD14Dim CD16bright monocytes in peripheral blood. The best objective clinical response was stable disease in 40.5% of patients. Conclusion: Emactuzumab in combination with Selicrelumab demonstrated a manageable safety profile and evidence of PD activity but did not translate into objective clinical responses. Trialregistration number: NCT02760797.