Home>>Signaling Pathways>> Immunology/Inflammation>> Apoptosis>>Sideroxylin

Sideroxylin Sale

目录号 : GC62242

Sideroxylin 是一种从 Callistemon lanceolatus 中分离的 C-甲基化黄酮,对金黄色葡萄球菌具有抗菌活性。Sideroxylin 可抑制卵巢癌细胞增殖并诱导凋亡 (apoptosis),导致 DNA 断裂,线粒体膜去极化,产生活性氧 (ROS)。

Sideroxylin Chemical Structure

Cas No.:3122-87-0

规格 价格 库存 购买数量
5 mg
¥17,100.00
现货

电话:400-920-5774 Email: sales@glpbio.cn

Customer Reviews

Based on customer reviews.

Sample solution is provided at 25 µL, 10mM.

产品文档

Quality Control & SDS

View current batch:

产品描述

Sideroxylin is a C-methylated flavone isolated from Callistemon lanceolatus and exerts antimicrobial activity against Staphylococcus aureus. Sideroxylin inhibits ovarian cancer cell proliferation and induces apoptosis, causing DNA fragmentation, depolarization of the mitochondrial membrane, the generation of reactive oxygen species (ROS)[1].

[1]. Sunwoo Park, et al. Sideroxylin (Callistemon Lanceolatus) Suppressed Cell Proliferation and Increased Apoptosis in Ovarian Cancer Cells Accompanied by Mitochondrial Dysfunction, the Generation of Reactive Oxygen Species, and an Increase of Lipid Peroxidation. J Cell Physiol. 2018 Nov;233(11):8597-8604.

Chemical Properties

Cas No. 3122-87-0 SDF
分子式 C18H16O5 分子量 312.32
溶解度 DMSO : 15.5 mg/mL (49.63 mM; Need ultrasonic and warming) 储存条件 Store at -20°C
General tips 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。
储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。
为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。
Shipping Condition 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。

溶解性数据

制备储备液
1 mg 5 mg 10 mg
1 mM 3.2018 mL 16.0092 mL 32.0184 mL
5 mM 0.6404 mL 3.2018 mL 6.4037 mL
10 mM 0.3202 mL 1.6009 mL 3.2018 mL
  • 摩尔浓度计算器

  • 稀释计算器

  • 分子量计算器

质量
=
浓度
x
体积
x
分子量
 
 
 
*在配置溶液时,请务必参考产品标签上、MSDS / COA(可在Glpbio的产品页面获得)批次特异的分子量使用本工具。

计算

动物体内配方计算器 (澄清溶液)

第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量)
给药剂量 mg/kg 动物平均体重 g 每只动物给药体积 ul 动物数量
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方)
% DMSO % % Tween 80 % saline
计算重置

Research Update

Sideroxylin (Callistemon lanceolatus) suppressed cell proliferation and increased apoptosis in ovarian cancer cells accompanied by mitochondrial dysfunction, the generation of reactive oxygen species, and an increase of lipid peroxidation

J Cell Physiol 2018 Nov;233(11):8597-8604.PMID:29904922DOI:10.1002/jcp.26540.

Sideroxylin is a C-methylated flavone isolated from Callistemon lanceolatus and exerts antimicrobial activity against Staphylococcus aureus. However, the anticancer effects of Sideroxylin and its intracellular signaling mechanisms have not yet been identified. Results of our study showed that Sideroxylin decreased cell proliferation and increased apoptosis, causing DNA fragmentation, depolarization of the mitochondrial membrane, the generation of reactive oxygen species, and an increase of lipid peroxidation in ovarian cancer cells (ES2 and OV90 cells). Additionally, Sideroxylin activated the phosphorylation of ERK1/2, JNK, P38, and MAPK proteins and the use of LY294002, U0126, SB203580, and SP600125 to block their phosphorylation, respectively, in ES2 and OV90 cells. Collectively, the results of present study indicated that Sideroxylin was a novel therapeutic agent to combat the proliferation of ovarian cancer cells through the induction of mitochondrial dysfunction and the activation of PI3 K and MAPK signal transduction.

Identification of tetragocarbone C and Sideroxylin as the most potent anti-inflammatory components of Syncarpia glomulifera

Fitoterapia 2021 Apr;150:104843.PMID:33539940DOI:10.1016/j.fitote.2021.104843.

In contrast to ancient Western and Asian cultures, medicinal plants of the Aboriginal and Torres Strait Islanders in Australia have not been as intensively studied for their molecular composition and molecular bioactivity. Syncarpia glomulifera subsp. glomulifera is a species in the plant family Myrtaceae. The resin of the plant has been traditionally used by the D'harawal people of Western Sydney to heal inflamed sores and ulcers. Hence, the anti-inflammatory activity of its leaf extract was investigated in RAW 264.7 macrophage and N11 microglia cell lines to isolate and identify the most active compounds. One new compound, tetragocarbone C, and three known compounds, tetragocarbone B, Sideroxylin, and lumaflavanone A showed potent anti-inflammatory activity by downregulating nitric oxide and TNF-α production in LPS and IFN-γ stimulated cells. Except for the less potent tetragocarbone B, all compounds had an IC50 value (for nitric oxide downregulation) of <10 μg/mL and moderate cytotoxicity in both cell lines. The molecular targets along pro-inflammatory signaling pathways were further investigated in RAW 264.7 cells. All four compounds suppressed phosphorylation of ERK, c-Jun, and limited the phosphorylation of STAT-1 and STAT-3 in response to LPS and IFN-γ activation. The four compounds also suppressed NF-κB activation by preventing the translocation of the p65 subunit into the nucleus. Collectively, these findings suggest that the compounds isolated from Syncarpia glomulifera, especially tetragocarbone C and Sideroxylin are promising anti-inflammatory agents, and could be further investigated for the treatment of diseases characterized by chronic inflammation.

Synergy-directed fractionation of botanical medicines: a case study with goldenseal (Hydrastis canadensis)

J Nat Prod 2011 Jul 22;74(7):1621-9.PMID:21661731DOI:10.1021/np200336g.

It is often argued that the efficacy of herbal medicines is a result of the combined action of multiple constituents that work synergistically or additively. Determining the bioactive constituents in these mixtures poses a significant challenge. We have developed an approach to address this challenge, synergy-directed fractionation, which combines comprehensive mass spectrometry profiling with synergy assays and natural products isolation. The applicability of synergy-directed fractionation was demonstrated using the botanical medicine goldenseal (Hydrastis canadensis) as a case study. Three synergists from goldenseal were identified, Sideroxylin, 8-desmethyl-sideroxylin, and 6-desmethyl-sideroxylin. These flavonoids synergistically enhance the antimicrobial activity of the alkaloid berberine (also a constituent of H. canadensis) against Staphylococcus aureus by inhibition of the NorA multidrug resistance pump. The flavonoids possess no inherent antimicrobial activity against S. aureus; therefore, they could have been missed using traditional bioactivity-directed fractionation. The flavonoid synergists are present at higher concentration in extracts from H. canadensis leaves, while the antimicrobial alkaloid berberine is present at higher levels in H. canadensis roots. Thus, it may be possible to produce an extract with optimal activity against S. aureus using a combination of goldenseal roots and leaves.

An Isoflavone from Leiophyllum buxifolium and Its Antiproliferative Effect

J Nat Prod 2015 Jul 24;78(7):1748-51.PMID:26086179DOI:10.1021/acs.jnatprod.5b00100.

A new C-methylisoflavone, isosideroxylin (1), and a known C-methylflavone, Sideroxylin (2), were isolated from the EtOAc extract of the leaves of Leiophyllum buxifolium. The two compounds were evaluated with the sulforhodamine B assay for their antiproliferative effects against ER(-) MDA-MB-231 and ER(+) MCF-7 breast cancer cell lines and the NIH3T3 mouse fibroblast cell line. Isosideroxylin (1) displayed a selective antiproliferative effect against MDA-MB-231 cells.

C-methylflavonoids isolated from Callistemon lanceolatus protect PC12 cells against Abeta-induced toxicity

Planta Med 2010 Jun;76(9):863-8.PMID:20101562DOI:10.1055/s-0029-1240801.

Increased beta-amyloid (Abeta) production and its aggregation to the oligomeric state is considered to be a major cause of Alzheimer's disease (AD). Therefore, reducing Abeta-induced neurotoxicity could provide a suitable means of prevention or intervention in the disease course of AD. The neuroprotective effects of isolates from Callistemon lanceolatus DC. (Myrtaceae) against Abeta were evaluated using PC12 cells. To evaluate the effects of Abeta on apoptotic cell death and the effects of Bcl-2 family proteins and caspase-3, TUNEL assays and Western blotting were performed, respectively. Substantial fractionation and purification of the EtOAc-soluble extract of the aerial parts of C. lanceolatus afforded six flavonoids, 4',5-dihydroxy-6,8-dimethyl-7-methoxyflavanone (1), eucalyptin (2), 8-demethyleucalyptin (3), Sideroxylin (4), syzalterin (5), and quercetin (6). Compounds 1, 5, and 6 were found to protect PC12 cells effectively against Abeta-induced toxicity. In particular, compound 1 showed the most promising neuroprotective effect with an ED (50) value of 6.7 microM in terms of decreasing Abeta-induced apoptotic cell death, and this was accompanied by a decrease in caspase-3 activation and an increase in Bcl-2/Bax ratio. These results suggest that compound 1 could be developed as a candidate anti-AD agent due to its attenuation of Abeta-induced apoptotic cell death.