Sitafloxacin
(Synonyms: 西他沙星; DU6859a) 目录号 : GC15081西他沙星是一种新的氟喹诺酮类药物,具有更广的抗菌谱,作为广谱抗菌剂,对革兰氏阳性、革兰氏阴性和非典型病原体具有比氧氟沙星等其他喹诺酮类药物更强的活性, CPFX 和司帕沙星.西他沙星比其他喹诺酮类抗生素更能抑制 TNFα 的产生。
Cas No.:127254-12-0
Sample solution is provided at 25 µL, 10mM.
Sitafloxacin is a new fluoroquinolone offering a broader spectrum , as a broad-spectrum antimicrobial agent[2],has more potent activity against Gram-positive, Gramnegative and atypical pathogens than other quinolones such as ofloxacin, CPFX and sparfloxacin[7,8].
Sitafloxacin suppressed TNFα production more strongly than the other quinolone antibiotics. It did not suppress the signaling pathways that produced TNFα but increased phosphorylated ERK. Sitafloxacin inhibited the extracellular release of TNFα[5,6].TACE specifically cleaves pro-TNFα to release TNFα from cell. Sitafloxacin reduced the phosphorylation and activity of TACE[1]. Sitafloxacin is effective against pneumococcal infections, and incidence of drug-resistant mutants is low in vitro conditions[3].
Sitafloxacin was effective against Haemophilus influenzae pneumonia in a murine model. In Sitafloxacin-treated mice, H. influenzae was decreased by 3 days after starting oral administration of Sitafloxacin, total cell counts and neutrophil counts in BALF were considerably decreased, and histopathologically inflammatory changes were greatly improved with Sitafloxacin treatment [4]. Sitafloxacin can achieve a higher tissue concentration than CPFX[9]. Besides, Sitafloxacin monotherapy might be effective against low-risk FN in lung cancer patients[10].
References:
[1]: Sakamaki I, Fukushi M, et,al. Sitafloxacin reduces tumor necrosis factor alpha (TNFα) converting enzyme (TACE) phosphorylation and activity to inhibit TNFα release from lipopolysaccharide-stimulated THP-1 cells. Sci Rep. 2021 Dec 17;11(1):24154. doi: 10.1038/s41598-021-03511-5. PMID: 34921186; PMCID: PMC8683466.
[2]: Sato K, Hoshino K, et,al. Antimicrobial activity of DU-6859, a new potent fluoroquinolone, against clinical isolates. Antimicrob Agents Chemother. 1992 Jul;36(7):1491-8. doi: 10.1128/AAC.36.7.1491. PMID: 1324647; PMCID: PMC191610.
[3]: Onodera Y, Uchida Y, et,al. Dual inhibitory activity of sitafloxacin (DU-6859a) against DNA gyrase and topoisomerase IV of Streptococcus pneumoniae. J Antimicrob Chemother. 1999 Oct;44(4):533-6. doi: 10.1093/jac/44.4.533. PMID: 10588315.
[4]: Nakamura S, Yanagihara K, et,al. In vivo efficacy of sitafloxacin in a new murine model of non-typeable Haemophilus influenzae pneumonia by sterile intratracheal tube. Int J Antimicrob Agents. 2009 Sep;34(3):210-4. doi: 10.1016/j.ijantimicag.2009.03.011. Epub 2009 Apr 24. PMID: 19394203.
[5]: Black RA, Rauch CT, et,al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997 Feb 20;385(6618):729-33. doi: 10.1038/385729a0. PMID: 9034190.
[6]: Moss ML, Jin SL, et,al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997 Feb 20;385(6618):733-6. doi: 10.1038/385733a0. Erratum in: Nature 1997 Apr 17;386(6626):738. PMID: 9034191.
[7]: Milatovic D, Schmitz FJ, et,al. In vitro activities of sitafloxacin (DU-6859a) and six other fluoroquinolones against 8,796 clinical bacterial isolates. Antimicrob Agents Chemother. 2000 Apr;44(4):1102-7. doi: 10.1128/AAC.44.4.1102-1107.2000. PMID: 10722524; PMCID: PMC89825.
[8]: Miyashita N, Niki Y, et,al. In vitro and in vivo activities of sitafloxacin against Chlamydia spp. Antimicrob Agents Chemother. 2001 Nov;45(11):3270-2. doi: 10.1128/AAC.45.11.3270-3272.2001. PMID: 11600398; PMCID: PMC90824.
[9]: Fukuda Y, Yanagihara K, et,al. In vivo efficacies and pharmacokinetics of DX-619, a novel des-fluoro(6) quinolone, against Streptococcus pneumoniae in a mouse lung infection model. Antimicrob Agents Chemother. 2006 Jan;50(1):121-5. doi: 10.1128/AAC.50.1.121-125.2006. PMID: 16377676; PMCID: PMC1346772.
[10]: On R, Matsumoto T, et,al. Lung Oncology Group in Kyushu (LOGIK). Efficacy and Safety of Sitafloxacin in Treating Low-risk Febrile Neutropenia in Patients with Lung Cancer. JMA J. 2022 Jul 15;5(3):334-340. doi: 10.31662/jmaj.2021-0227. Epub 2022 May 23. PMID: 35992295; PMCID: PMC9358298.
Cell experiment [1]: | |
Cell lines |
LPS-stimulated THP-1 cells |
Preparation Method |
THP-1 cells were cultured with LPS in the presence or absence of antibiotics (Sitafloxacin) for 4 h. Following the incubation, supernatants were collected. |
Reaction Conditions |
1-50 µg/mL Sitafloxacin for 4h |
Applications |
Sitafloxacin significantly reduced the concentration of TNFα in the supernatants of LPS-stimulated THP-1 cells than other quinolone antibiotics did; Sitafloxacin also reduced the levels of IL-8, IP-10, MCP-1, MIP-1α and MIP-1β. |
Animal experiment [2]: | |
Animal models |
Six-week-old male, ddY, specific-pathogen-free mice (body weight 16-20 g) |
Preparation Method |
From 24 h after infection, antibiotics were administered orally twice a day to the Sitafloxacin and CPFX treatment groups for 3 days.Each single dose was 10 mg/kg |
Dosage form |
10 mg/kg Sitafloxacin twice a day for 3 days |
Applications |
In Sitafloxacin-treated mice, H. influenzae was decreased by 3 days after starting oral administration of Sitafloxacin. |
References: [1]. Sakamaki I, Fukushi M, et,al. Sitafloxacin reduces tumor necrosis factor alpha (TNFα) converting enzyme (TACE) phosphorylation and activity to inhibit TNFα release from lipopolysaccharide-stimulated THP-1 cells. Sci Rep. 2021 Dec 17;11(1):24154. doi: 10.1038/s41598-021-03511-5. PMID: 34921186; PMCID: PMC8683466. [2]. Nakamura S, Yanagihara K, et,al. In vivo efficacy of sitafloxacin in a new murine model of non-typeable Haemophilus influenzae pneumonia by sterile intratracheal tube. Int J Antimicrob Agents. 2009 Sep;34(3):210-4. doi: 10.1016/j.ijantimicag.2009.03.011. Epub 2009 Apr 24. PMID: 19394203. |
Cas No. | 127254-12-0 | SDF | |
别名 | 西他沙星; DU6859a | ||
化学名 | 7-[(7S)-7-amino-5-azaspiro[2.4]heptan-5-yl]-8-chloro-6-fluoro-1-[(1R,2S)-2-fluorocyclopropyl]-4-oxoquinoline-3-carboxylic acid | ||
Canonical SMILES | C1CC12CN(CC2N)C3=C(C=C4C(=C3Cl)N(C=C(C4=O)C(=O)O)C5CC5F)F | ||
分子式 | C19H18ClF2N3O3 | 分子量 | 409.81 |
溶解度 | DMF: slightly soluble,DMSO: slightly soluble,Methanol: slightly soluble | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 2.4402 mL | 12.2008 mL | 24.4016 mL |
5 mM | 0.488 mL | 2.4402 mL | 4.8803 mL |
10 mM | 0.244 mL | 1.2201 mL | 2.4402 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet