Sofosbuvir impurity C
(Synonyms: 索非布韦杂质C) 目录号 : GC30533SofosbuvirimpurityC是Sofosbuvir的一种低活性杂质。Sofosbuvir是一种HCVRNA复制抑制剂,具有有效的抗丙型肝炎病毒(HCV)活性。
Cas No.:1496552-28-3
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Sofosbuvir impurity C is the less active impurity of Sofosbuvir, Sofosbuvir is an active inhibitor of HCV RNA replication in the HCV replicon assay, demonstrates potent anti-hepatitis C virus (HCV) activity.
Cas No. | 1496552-28-3 | SDF | |
别名 | 索非布韦杂质C | ||
Canonical SMILES | O=[P@@](N[C@H](C)C(OC(C)C)=O)(OC[C@@H]1[C@@H](O)[C@](F)(C)[C@H](N2C=CC(NC2=O)=O)O1)OC3=CC=CC=C3 | ||
分子式 | C22H29FN3O9P | 分子量 | 529.45 |
溶解度 | Soluble in DMSO | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 1.8888 mL | 9.4438 mL | 18.8875 mL |
5 mM | 0.3778 mL | 1.8888 mL | 3.7775 mL |
10 mM | 0.1889 mL | 0.9444 mL | 1.8888 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs
Human beings are in dire need of developing an efficient treatment against fierce viruses like hepatitis C virus (HCV) and Coronavirus (COVID-19). These viruses have already caused the death of over two million people all over the world. Therefore, over the last years, many direct-acting antiviral drugs (DAADs) were developed targeting nonstructural proteins of these two viruses. Among these DAADs, several drugs were found more effective and safer than the others as sofosbuvir, ledipasvir, grazoprevir, glecaprevir, voxilaprevir, velpatasvir, elbasvir, pibrentasvir and remdesivir. The last one is indicated for COVID-19, while the rest are indicated for HCV treatment. Due to the valuable impact of these DAADs, larger number of analytical methods were required to meet the needs of the clinical studies. Therefore, this review will highlight the current approaches, published in the period between 2017 to present, dealing with the determination of these drugs in two different matrices: pharmaceuticals and biological fluids with the challenges of analyzing these drugs either alone, with other drugs, in presence of interferences (pharmaceutical excipients or endogenous plasma components) or in presence of matrix impurities, degradation products and metabolites. These approaches include spectroscopic, chromatographic, capillary electrophoretic, voltametric and nuclear magnetic resonance methods that have been reported during this period. Moreover, the analytical instrumentation and methods used in determination of these DAADs will be illustrated in tabulated forms.
Potential of RP-UHPLC-DAD-MS for the qualitative and quantitative analysis of sofosbuvir in film coated tablets and profiling degradants
Sofosbuvir is one of the new direct-acting antiviral drugs against hepatitis C virus (HCV) infection. This drug has recently been launched into the market, and generic versions of the medication are expected to be produced by local drug producers in some countries. Therefore, new methods are required to control sofosbuvir in pharmaceuticals. In the present study, a new method based on reversed phase (RP)-ultra-high performance liquid chromatography (UHPLC) coupled to diode array detection (DAD) and mass spectrometry (MS) was developed to facilitate the qualitative and quantitative analysis of sofosbuvir in film coated tablets. A wavelength of 260 nm was selected to perform a cost-effective quantification and the method showed adequate linearity, with an R2 value of 0.9998, and acceptable values of accuracy (75%-102%) and precision (residual standard deviation <5%). The detection and quantification limits were 0.07 μg/mL and 0.36 μg/mL, respectively. Furthermore, the use of high-resolution MS enabled us to ensure the specificity, check impurities and better sensitivity. Therefore, this methodology promises to be suitable not only for the routine analysis of sofosbuvir in pharmaceutical dosage forms, but also for potential degradants.
Development and validation of a versatile HPLC-DAD method for simultaneous determination of the antiviral drugs daclatasvir, ledipasvir, sofosbuvir and ribavirin in presence of seven potential impurities. Application to assay of dosage forms and dissolution studies
This study describes a simple, sensitive, specific and generic HPLC-DAD method for simultaneous determination of four drugs prescribed for treatment of Hepatitis C Virus (HCV) infection. Investigated drugs include daclatasvir (DAC), ledipasvir (LED), sofosbuvir (SOF) and ribavirin (RIB). Successful separation was accomplished using Thermohypersil BDS-C8 column (4.6 × 250 mm, 5 ?m) with gradient elution of the mobile phase consisted of mixed phosphate buffer pH 7.5 and methanol. Gradient elution started with 25% methanol, ramped up linearly to 80% in 15 min then kept constant till the end of the run. Flow rate was 1.5 mL/min. Peak areas were measured at 235, 260, 315, and 332 nm for RIB, SOF, DAC, and LED, respectively. Peaks of the analytes were perfectly resolved with retention times 2.0, 12.1, 14.7, and 17.2 min for RIB, SOF, DAC, and LED, respectively. The developed method was validated according to ICH guidelines with respect to system suitability, linearity, ranges, accuracy, precision, specificity, robustness, and limits of detection and quantification. The proposed method showed good linearity in the ranges 5-500, 2-300, 0.5-75, and 0.5-75 ?g/mL for RIB, SOF, DAC, and LED respectively. Limits of detection were 0.10-0.66 μg/mL for the analyzed drugs. Specificity was established by separation of target drugs from 7 process-related impurities for SOF including its major metabolite (GS-331007). Applicability of the proposed method to real life situations was assessed through the analysis of four different pharmaceutical formulations and satisfactory results were obtained. Additionally, dissolution profiles of the 4 drugs were studied using the developed method.