Sotigalimab
目录号 : GC68356Sotigalimab 是一种 CD40 激动性单克隆抗体,可用于转移性胰腺癌的研究。
Cas No.:2305607-45-6
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.50%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Sotigalimab, a CD40 agonistic monoclonal antibody, can be used for the research of metastatic pancreatic adenocarcinoma[1].
[1]. Mark H O'Hara, et al. CD40 agonistic monoclonal antibody APX005M (sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study. Lancet Oncol. 2021 Jan;22(1)
Cas No. | 2305607-45-6 | SDF | Download SDF |
分子式 | 分子量 | ||
溶解度 | 储存条件 | Store at -80°C | |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Sotigalimab and/or nivolumab with chemotherapy in first-line metastatic pancreatic cancer: clinical and immunologic analyses from the randomized phase 2 PRINCE trial
Nat Med 2022 Jun;28(6):1167-1177.PMID:35662283DOI:10.1038/s41591-022-01829-9.
Chemotherapy combined with immunotherapy has improved the treatment of certain solid tumors, but effective regimens remain elusive for pancreatic ductal adenocarcinoma (PDAC). We conducted a randomized phase 2 trial evaluating the efficacy of nivolumab (nivo; anti-PD-1) and/or Sotigalimab (sotiga; CD40 agonistic antibody) with gemcitabine/nab-paclitaxel (chemotherapy) in patients with first-line metastatic PDAC ( NCT03214250 ). In 105 patients analyzed for efficacy, the primary endpoint of 1-year overall survival (OS) was met for nivo/chemo (57.7%, P = 0.006 compared to historical 1-year OS of 35%, n = 34) but was not met for sotiga/chemo (48.1%, P = 0.062, n = 36) or sotiga/nivo/chemo (41.3%, P = 0.223, n = 35). Secondary endpoints were progression-free survival, objective response rate, disease control rate, duration of response and safety. Treatment-related adverse event rates were similar across arms. Multi-omic circulating and tumor biomarker analyses identified distinct immune signatures associated with survival for nivo/chemo and sotiga/chemo. Survival after nivo/chemo correlated with a less suppressive tumor microenvironment and higher numbers of activated, antigen-experienced circulating T cells at baseline. Survival after sotiga/chemo correlated with greater intratumoral CD4 T cell infiltration and circulating differentiated CD4 T cells and antigen-presenting cells. A patient subset benefitting from sotiga/nivo/chemo was not identified. Collectively, these analyses suggest potential treatment-specific correlates of efficacy and may enable biomarker-selected patient populations in subsequent PDAC chemoimmunotherapy trials.
CD40 agonistic monoclonal antibody APX005M (Sotigalimab) and chemotherapy, with or without nivolumab, for the treatment of metastatic pancreatic adenocarcinoma: an open-label, multicentre, phase 1b study
Lancet Oncol 2021 Jan;22(1):118-131.PMID:33387490DOI:10.1016/S1470-2045(20)30532-5.
Background: Standard chemotherapy remains inadequate in metastatic pancreatic adenocarcinoma. Combining an agonistic CD40 monoclonal antibody with chemotherapy induces T-cell-dependent tumour regression in mice and improves survival. In this study, we aimed to evaluate the safety of combining APX005M (Sotigalimab) with gemcitabine plus nab-paclitaxel, with and without nivolumab, in patients with pancreatic adenocarcinoma to establish the recommended phase 2 dose. Methods: This non-randomised, open-label, multicentre, four-cohort, phase 1b study was done at seven academic hospitals in the USA. Eligible patients were adults aged 18 years and older with untreated metastatic pancreatic adenocarcinoma, Eastern Cooperative Oncology Group performance status score of 0-1, and measurable disease by Response Evaluation Criteria in Solid Tumors version 1.1. All patients were treated with 1000 mg/m2 intravenous gemcitabine and 125 mg/m2 intravenous nab-paclitaxel. Patients received 0·1 mg/kg intravenous APX005M in cohorts B1 and C1 and 0·3 mg/kg in cohorts B2 and C2. In cohorts C1 and C2, patients also received 240 mg intravenous nivolumab. Primary endpoints comprised incidence of adverse events in all patients who received at least one dose of any study drug, incidence of dose-limiting toxicities (DLTs) in all patients who had a DLT or received at least two doses of gemcitabine plus nab-paclitaxel and one dose of APX005M during cycle 1, and establishing the recommended phase 2 dose of intravenous APX005M. Objective response rate in the DLT-evaluable population was a key secondary endpoint. This trial (PRINCE, PICI0002) is registered with ClinicalTrials.gov, NCT03214250 and is ongoing. Findings: Between Aug 22, 2017, and July 10, 2018, of 42 patients screened, 30 patients were enrolled and received at least one dose of any study drug; 24 were DLT-evaluable with median follow-up 17·8 months (IQR 16·0-19·4; cohort B1 22·0 months [21·4-22·7], cohort B2 18·2 months [17·0-18·9], cohort C1 17·9 months [14·3-19·7], cohort C2 15·9 months [12·7-16·1]). Two DLTs, both febrile neutropenia, were observed, occurring in one patient each for cohorts B2 (grade 3) and C1 (grade 4). The most common grade 3-4 treatment-related adverse events were lymphocyte count decreased (20 [67%]; five in B1, seven in B2, four in C1, four in C2), anaemia (11 [37%]; two in B1, four in B2, four in C1, one in C2), and neutrophil count decreased (nine [30%]; three in B1, three in B2, one in C1, two in C2). 14 (47%) of 30 patients (four each in B1, B2, C1; two in C2) had a treatment-related serious adverse event. The most common serious adverse event was pyrexia (six [20%] of 30; one in B2, three in C1, two in C2). There were two chemotherapy-related deaths due to adverse events: one sepsis in B1 and one septic shock in C1. The recommended phase 2 dose of APX005M was 0·3 mg/kg. Responses were observed in 14 (58%) of 24 DLT-evaluable patients (four each in B1, C1, C2; two in B2). Interpretation: APX005M and gemcitabine plus nab-paclitaxel, with or without nivolumab, is tolerable in metastatic pancreatic adenocarcinoma and shows clinical activity. If confirmed in later phase trials, this treatment regimen could replace chemotherapy-only standard of care in this population. Funding: Parker Institute for Cancer Immunotherapy, Cancer Research Institute, and Bristol Myers Squibb.
A Phase I Study of APX005M and Cabiralizumab with or without Nivolumab in Patients with Melanoma, Kidney Cancer, or Non-Small Cell Lung Cancer Resistant to Anti-PD-1/PD-L1
Clin Cancer Res 2021 Sep 1;27(17):4757-4767.PMID:34140403DOI:10.1158/1078-0432.CCR-21-0903.
Purpose: PD-1/PD-L1 inhibitors are approved for multiple tumor types. However, resistance poses substantial clinical challenges. Patients and methods: We conducted a phase I trial of CD40 agonist APX005M (Sotigalimab) and CSF1R inhibitor cabiralizumab with or without nivolumab using a 3+3 dose-escalation design (NCT03502330). Patients were enrolled from June 2018 to April 2019. Eligibility included patients with biopsy-proven advanced melanoma, non-small cell lung cancer (NSCLC), or renal cell carcinoma (RCC) who progressed on anti-PD-1/PD-L1. APX005M was dose escalated (0.03, 0.1, or 0.3 mg/kg i.v.) with a fixed dose of cabiralizumab with or without nivolumab every 2 weeks until disease progression or intolerable toxicity. Results: Twenty-six patients (12 melanoma, 1 NSCLC, and 13 RCC) were enrolled in six cohorts, 17 on nivolumab-containing regimens. Median duration of follow-up was 21.3 months. The most common treatment-related adverse events were asymptomatic elevations of lactate dehydrogenase (n = 26), creatine kinase (n = 25), aspartate aminotransferase (n = 25), and alanine aminotransferase (n = 19); periorbital edema (n = 17); and fatigue (n = 13). One dose-limiting toxicity (acute respiratory distress syndrome) occurred in cohort 2. The recommended phase 2 dose was APX005M 0.3 mg/kg, cabiralizumab 4 mg/kg, and nivolumab 240 mg every 2 weeks. Median days on treatment were 66 (range, 23-443). Median cycles were 4.5 (range, 2-21). One patient had unconfirmed partial response (4%), 8 stable disease (31%), 16 disease progression (62%), and 1 unevaluable (4%). Pro-inflammatory cytokines were upregulated 4 hours post-infusion. CD40 and MCSF increased after therapy. Conclusions: This first in-human study of patients with anti-PD-1/PD-L1-resistant tumors treated with dual macrophage-polarizing therapy, with or without nivolumab demonstrated safety and pharmacodynamic activity. Optimization of the dosing frequency and sequence of this combination is warranted.
Two types of biomarker-dependent chemo-immunotherapy for pancreatic cancer?
Cell Rep Med 2022 Oct 18;3(10):100788.PMID:36260984DOI:10.1016/j.xcrm.2022.100788.
Padron et al.1 studied the combination of chemotherapy (gemcitabine and nab-paclitaxel) with either an anti-PD1 (nivolumab) or an anti-CD40 (Sotigalimab) antibody in metastatic pancreatic cancer. They showed clinical benefit in individuals with unique biomarkers for each treatment combination.