Sotirimod (R850)
(Synonyms: R850) 目录号 : GC30463Sotirimod (R850) 是一种免疫刺激剂,可以潜在地治疗光化性角化病。
Cas No.:227318-75-4
Sample solution is provided at 25 µL, 10mM.
Quality Control & SDS
- View current batch:
- Purity: >98.00%
- COA (Certificate Of Analysis)
- SDS (Safety Data Sheet)
- Datasheet
Sotirimod is an immunostimulant, and can potentially treat for actinic keratosis.
Cas No. | 227318-75-4 | SDF | |
别名 | R850 | ||
Canonical SMILES | NC1=NC2=CC=CN=C2C3=C1N=C(C)N3CC(C)C | ||
分子式 | C14H17N5 | 分子量 | 255.32 |
溶解度 | DMSO : 25 mg/mL (97.92 mM; ultrasonic and warming and heat to 80°C) | 储存条件 | Store at -20°C |
General tips | 请根据产品在不同溶剂中的溶解度选择合适的溶剂配制储备液;一旦配成溶液,请分装保存,避免反复冻融造成的产品失效。 储备液的保存方式和期限:-80°C 储存时,请在 6 个月内使用,-20°C 储存时,请在 1 个月内使用。 为了提高溶解度,请将管子加热至37℃,然后在超声波浴中震荡一段时间。 |
||
Shipping Condition | 评估样品解决方案:配备蓝冰进行发货。所有其他可用尺寸:配备RT,或根据请求配备蓝冰。 |
制备储备液 | |||
1 mg | 5 mg | 10 mg | |
1 mM | 3.9167 mL | 19.5833 mL | 39.1665 mL |
5 mM | 0.7833 mL | 3.9167 mL | 7.8333 mL |
10 mM | 0.3917 mL | 1.9583 mL | 3.9167 mL |
第一步:请输入基本实验信息(考虑到实验过程中的损耗,建议多配一只动物的药量) | ||||||||||
给药剂量 | mg/kg | 动物平均体重 | g | 每只动物给药体积 | ul | 动物数量 | 只 | |||
第二步:请输入动物体内配方组成(配方适用于不溶于水的药物;不同批次药物配方比例不同,请联系GLPBIO为您提供正确的澄清溶液配方) | ||||||||||
% DMSO % % Tween 80 % saline | ||||||||||
计算重置 |
计算结果:
工作液浓度: mg/ml;
DMSO母液配制方法: mg 药物溶于 μL DMSO溶液(母液浓度 mg/mL,
体内配方配制方法:取 μL DMSO母液,加入 μL PEG300,混匀澄清后加入μL Tween 80,混匀澄清后加入 μL saline,混匀澄清。
1. 首先保证母液是澄清的;
2.
一定要按照顺序依次将溶剂加入,进行下一步操作之前必须保证上一步操作得到的是澄清的溶液,可采用涡旋、超声或水浴加热等物理方法助溶。
3. 以上所有助溶剂都可在 GlpBio 网站选购。
Validation of Blood Pressure Measurement Using a Smartwatch in Patients With Parkinson's Disease
Objectives: We aimed to validate the accuracy of blood pressure (BP) measurement using a smartwatch in patients with Parkinson's disease (PD). Materials and Methods: We compared 168 pairs of BP (n = 56) measurements acquired by a smartwatch (SM-R850) with those measured by a sphygmomanometer (reference device). Results: Differences between the smartwatch BP and reference BP measurements were compared. The mean and standard deviation of the differences systolic BP (SBP) and diastolic BP (DBP), measured by smartwatch and reference device, fulfilled both criterion 1 (0.4 ± 4.6 and 1.1 ± 4.5 mm Hg for DBP and SBP, respectively) and criterion 2 (0.2 ± 2.5 and 0.9 ± 2.4 mm Hg for DBP and SBP, respectively) of the BP validation criterion of the International Organization for Standardization. Conclusion: BP measurement using a smartwatch with a photoplethysmography sensor is an accurate and reliable method in patients with PD.
A graduate student's worth
Sampson et al. discuss the economic and societal value of graduate education, in particular in the USA.
Zygosity determination in hairless mice by PCR based on Hr(hr) gene analysis
We analyzed the Hr gene of a hairless mouse strain of unknown origin (HR strain, http://animal.nibio.go.jp/e_hr.html) to determine whether the strain shares a mutation with other hairless strains, such as HRS/J and Skh:HR-1, both of which have an Hr(hr) allele. Using PCR with multiple pairs of primers designed to amplify multiple overlapping regions covering the entire Hr gene, we found an insertion mutation in intron 6 of mutant Hr genes in HR mice. The DNA sequence flanking the mutation indicated that the mutation in HR mice was the same as that of Hr(hr) in the HRS/J strain. Based on the sequence, we developed a genotyping method using PCR to determine zygosities. Three primers were designed: S776 (GGTCTCGCTGGTCCTTGA), S607 (TCTGGAACCAGAGTGACAGACAGCTA), and R850 (TGGGCCACCATGGCCAGATTTAACACA). The S776 and R850 primers detected the Hr(hr) allele (275-bp amplicon), and S607 and R850 identified the wild-type Hr allele (244-bp amplicon). Applying PCR using these three primers, we confirmed that it is possible to differentiate among homozygous Hr(hr) (longer amplicons only), homozygous wild-type Hr(shorter amplicons only), and heterozygous (both amplicons) in HR and Hos:HR-1 mice. Our genomic analysis indicated that the HR, HRS/J, and Hos:HR-1 strains, and possibly Skh:HR-1 (an ancestor of Hos:HR-1) strain share the same Hr(hr) gene mutation. Our genotyping method will facilitate further research using hairless mice, and especially immature mice, because pups can be genotyped before their phenotype (hair coat loss) appears at about 2 weeks of age.
Genetic analysis of intestinal polyp development in Collaborative Cross mice carrying the Apc (Min/+) mutation
Background: Colorectal cancer is an abnormal tissue development in the colon or rectum. Most of CRCs develop due to somatic mutations, while only a small proportion is caused by inherited mutations. Familial adenomatous polyposis is an inherited genetic disease, which is characterized by colorectal polyps. It is caused by inactivating mutations in the Adenomatous polyposis coli gene. Mice carrying and non-sense mutation in Adenomatous polyposis coli gene at site R850, which designated Apc (R850X/+) (Min), develop intestinal adenomas, while the bulk of the disease is in the small intestine. A number of genetic modifier loci of Min have been mapped, but so far most of the underlying genes have not been identified. In our previous studies, we have shown that Collaborative Cross mice are a powerful tool for mapping loci responsible for phenotypic variation. As a first step towards identification of novel modifiers of Min, we assessed the phenotypic variation between 27 F1 crosses between different Collaborative cross mice and C57BL/6-Min lines.
Results: Here, C57BL/6-Min male mice were mated with females from 27 Collaborative cross lines. F1 offspring were terminated at 23 weeks old and multiple phenotypes were collected: polyp counts, intestine length, intestine weight, packed cell volume and spleen weight. Additionally, in eight selected F1 Collaborative cross-C57BL/6-Min lines, body weight was monitored and compared to control mice carry wildtype Adenomatous polyposis coli gene. We found significant (p < 0.05) phenotypic variation between the 27 F1 Collaborative cross-C57BL/6-Min lines for all the tested phenotypes, and sex differences with traits; Colon, body weight and intestine length phenotypes, only. Heritability calculation showed that these phenotypes are mainly controlled by genetic factors.
Conclusions: Variation in polyp development is controlled, an appreciable extent, by genetic factors segregating in the Collaborative cross population and suggests that it is suited for identifying modifier genes associated with Apc (Min/+) mutation, after assessing sufficient number of lines for quantitative trait loci analysis.
Genetic mapping of novel modifiers for ApcMin induced intestinal polyps' development using the genetic architecture power of the collaborative cross mice
Background: Familial adenomatous polyposis is an inherited genetic disease, characterized by colorectal polyps. It is caused by inactivating mutations in the Adenomatous polyposis coli (Apc) gene. Mice carrying a nonsense mutation in the Apc gene at R850, which is designated ApcMin/+ (Multiple intestinal neoplasia), develop intestinal adenomas. Several genetic modifier loci of Min (Mom) were previously mapped, but so far, most of the underlying genes have not been identified. To identify novel modifier loci associated with ApcMin/+, we performed quantitative trait loci (QTL) analysis for polyp development using 49 F1 crosses between different Collaborative Cross (CC) lines and C57BL/6 J-ApcMin/+mice. The CC population is a genetic reference panel of recombinant inbred lines, each line independently descended from eight genetically diverse founder strains. C57BL/6 J-ApcMin/+ males were mated with females from 49 CC lines. F1 offspring were terminated at 23 weeks and polyp counts from three sub-regions (SB1-3) of small intestinal and colon were recorded.
Results: The number of polyps in all these sub-regions and colon varied significantly between the different CC lines. At 95% genome-wide significance, we mapped nine novel QTL for variation in polyp number, with distinct QTL associated with each intestinal sub-region. QTL confidence intervals varied in width between 2.63-17.79 Mb. We extracted all genes in the mapped QTL at 90 and 95% CI levels using the BioInfoMiner online platform to extract, significantly enriched pathways and key linker genes, that act as regulatory and orchestrators of the phenotypic landscape associated with the ApcMin/+ mutation.
Conclusions: Genomic structure of the CC lines has allowed us to identify novel modifiers and confirmed some of the previously mapped modifiers. Key genes involved mainly in metabolic and immunological processes were identified. Future steps in this analysis will be to identify regulatory elements - and possible epistatic effects - located in the mapped QTL.